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4 DYNAMIC ANALYSIS

4.1 Overview

Dynamic analysis in UDEC permits two-dimensional, plane-strain or plane-stress, fully dynamic
analysis. The calculation is based on the explicit finite difference scheme (as discussed in Section 1
in Theory and Background) to solve the full equations of motion, using real rigid-block masses,
or lumped gridpoint masses derived from the real density of surrounding zones (rather than scaled
masses used for static solution). Background information on the dynamic formulation of the fully
nonlinear method implemented in UDEC is provided. (See Section 4.2.)

The dynamic formulation can be coupled to the structural element model, thus permitting analysis
of rock-structure interaction brought about by ground shaking. The dynamic feature can also be
coupled to the model for fluid flow in joints. This permits, for example, analyses of the effect of
dynamic loading of saturated joints. The dynamic model can likewise be coupled to the optional
thermal model in order to calculate the combined effect of thermal and dynamic loading. The
dynamic facility expands UDEC ’s analytic capability to a wide range of dynamic problems in
disciplines such as earthquake engineering, seismology and mine rockbursts.

This volume includes discussions on the various features and considerations associated with the
dynamic option in UDEC (i.e., dynamic loading and boundary conditions, wave transmission and
mechanical damping). These features are described separately in Section 4.3.

The user is strongly encouraged to become familiar with the operation of UDEC for simple me-
chanical, static problems before attempting to solve problems involving dynamic loading. Dynamic
analysis is often very complicated, and requires a considerable amount of insight to interpret cor-
rectly. A recommended procedure for conducting dynamic numerical analysis with UDEC is
provided in Section 4.4.

Validation and example problems illustrating the application of the dynamic model are provided in
Section 4.5. *.

* The data files in this section are stored in the folder “ITASCA\UDEC700\Datafiles\Dynamic”
with the extension “.DAT.” A project file is also provided for each example. For the GIIC, open the
project file by clicking on the File / Open Projectmenu item and select the project file name (with
“.PRJ” extension). Then click on the Project Options icon at the top of the Project Tree Record,
select Rebuild unsaved states. For the GUI, open the project file by clicking on the File / Open
Project menu item and select the project file name (with “.UDPRJ” extension). Then click on the
Project tab and select the “Master.dat” and run it
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4 - 2 Special Features – Structures/Fluid Flow/Thermal/Dynamics

4.2 Dynamic Formulation

The finite difference formulation is identical to that described in Section 1 in Theory and Back-
ground, except that “real” masses are used at rigid-block centroids or deformable-block gridpoints
instead of the scaled inertial masses used for optimum convergence in the static solution scheme.
For deformable blocks, each triangular zone contributes one-third of its mass (computed from zone
density and area) to each of the three associated gridpoints. In finite-element terminology, UDEC
uses lumped masses and a diagonal mass matrix.

The calculation of critical timestep is identical to that given in Section 1.2.8 in Theory and Back-
ground. If stiffness-proportional damping is used (see Section 4.3.3.1), the timestep must be re-
duced, for stability. Belytschko (1983) provides a formula for critical timestep, �tβ , that includes
the effect of stiffness-proportional damping:

�tβ =
{ 2

ωmax

}(√
1 + λ2 − λ

)
(4.1)

where ωmax is the highest eigenfrequency of the system, and λ is the fraction of critical damping at
this frequency.

Both ωmax and λ are estimated in UDEC, since an eigenvalue solution is not performed. The
estimates are

ωmax = 2

�td
(4.2)

λ = 0.4 β

�td
(4.3)

given

β = ξmin/ωmin (4.4)

where ξmin and ωmin are the damping fraction and angular frequency specified for Rayleigh damping
(see Section 4.3.3.1), and �td is the timestep for dynamic runs when no stiffness-proportional
damping is used. The resulting value of �tβ is used as the dynamic timestep if stiffness-proportional
damping is in operation.
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4.3 Dynamic Modeling Considerations

There are three aspects that the user should consider when preparing a UDEC model for a dynamic
analysis: (1) dynamic loading and boundary conditions; (2) wave transmission through the model;
and (3) mechanical damping. This section provides guidance on addressing each aspect when
preparing a UDEC data file for dynamic analysis. Section 4.4 illustrates the use of most of the
features discussed here.

4.3.1 Dynamic Loading and Boundary Conditions

UDEC models a region of jointed material subjected to external and/or internal dynamic loading
by applying a dynamic input boundary condition either at the model boundary or to internal blocks.
Wave reflections at model boundaries are minimized by specifying either quiet (viscous) or free-
field boundary conditions. The types of dynamic loading and boundary conditions are shown
schematically in Figure 4.1; each condition is discussed in the following sections.
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Figure 4.1 Types of dynamic loading and boundary conditions in UDEC
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4.3.1.1 Application of Dynamic Input

In UDEC, the dynamic input can be applied in one of four ways:

(a) a velocity history;

(b) a stress (or pressure) history;

(c) a force history; or

(d) a fluid pressure history within joints.

Dynamic input is usually applied to the boundaries of deformable-block models with the block edge
apply or block gridpoint apply commands. Forces or pressures can also be applied to interior blocks
by using the block edge apply interior command. Fluid pressures within joint domains are applied
with the block domain fix command.

The history function for the input is treated as a multiplier on the value specified with the block
edge apply or block gridpoint apply commands. The history multiplier is assigned with the history
keyword, and can be in one of three forms:

(1) an harmonic function defined by the sine or cosine keyword;

(2) a table defined by the table command;

(3) a FISH function.

A sine or cosine wave is applied with a specified frequency and time period.

With table input, the multiplier values and corresponding time values are entered as individual pairs
of numbers in the specified table; the first number of each pair is assumed to be a value of dynamic
time. The time intervals between successive table entries need not be the same for all entries.

If a FISH function is used to provide the multiplier, the function must access dynamic time within
the function, using the UDEC scalar variable block.mechanical.time.total, and compute a multiplier
value that corresponds to this time. Example 4.4 provides an example of dynamic loading derived
from a FISH function.

Dynamic input can be applied either in the x- or y-direction corresponding to the xy-axes for the
model, or in the normal and shear directions to the model boundary. Histories can only be specified
for input in the x- and y-directions.

Dynamic input can also be applied for rigid block models. Velocities are applied to rigid blocks by
first fixing the block with the block fix command, and then specifying the velocity components with
the UDEC model variable block apply velocity-x or block apply velocity-y. Forces can be applied
to rigid blocks with the block apply force-x or block apply force-y command. History functions for
the velocities or loads are specified via FISH. An application of a velocity history is illustrated in
Example 4.4.
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One restriction when applying velocity input to model boundaries is that this boundary condition
cannot be applied along the same boundary as a “quiet” (viscous) boundary condition (compare
Figure 4.1(a) to Figure 4.1(b)). To overcome this, a stress boundary condition can be used instead
(i.e., a velocity record can be transformed into a stress record and applied to a quiet boundary). A
velocity wave may be converted to a stress wave using

σn = 2(ρ Cp) vn (4.5)

or

σs = 2(ρ Cs) vs (4.6)

where σn = applied normal stress;

σs = applied shear stress;

ρ = mass density;

Cp = speed of p-wave propagation through medium;

Cs = speed of s-wave propagation through medium;

vn = input normal particle velocity; and

vs = input shear particle velocity.

Cp is given by

Cp =
√

K + 4G/3

ρ
(4.7)

and Cs is given by

Cs = √
G/ρ (4.8)

The formulae assume plane-wave conditions. The factor of two in Eqs. (4.5) and (4.6) accounts for
the fact that the applied stress must be doubled to overcome the effect of the viscous boundary. The
formulation is similar to that of Joyner and Chen (1975). Note that, in this case, a velocity history
obtained at the boundary may be different than that from the original velocity record, because of
the one-dimensional approximations of Eqs. (4.5) and (4.6).

To illustrate wave input at a quiet boundary, consider Example 4.1, in which a pulse is applied as a
stress history to the bottom of a vertical, 50-m high column. The bottom of the column is declared
quiet in the horizontal direction, and the top is free. The properties are chosen such that the shear
wave speed is 100 m/sec, and the product, ρCs , is 105. The amplitude of the stress pulse is set,
therefore, to 2 × 105, according to Eq. (4.6), in order to generate a velocity amplitude of 1 m/sec
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in the column. Figure 4.2 shows time histories of x-velocity at the base, middle and top of the
column; the amplitude of the outgoing wave is seen to be 1 m/sec, as expected. The first three
pulses in Figure 4.2 correspond, in order, to the outgoing waves at the base, middle and top. The
final two pulses correspond to waves reflected from the free surface, measured at the middle and
base, respectively. The velocity-doubling effect of a free surface (as well as the lack of waves after
a time of about 1.3 seconds) can be seen, which confirms that the quiet base is working correctly.
(See Section 4.3.1.3.) The doubling effect associated with a free surface is described in texts on
elastodynamics (e.g., Graff 1991).

Example 4.1 Shear wave propagation in a vertical column

model new
;file: wave.dat
model title ’Shear wave propagation in a vertical column’
block tolerance corner-round-length 5E-2
block tolerance minimum-edge-length 0.1
block create polygon 0 0 0 50 1 50 1 0
block zone gen quad 0.25
block zone group ’block’
block zone cmodel assign elastic density 1E3 bulk 2E7 shear 1E7 ...

range group ’block’
fish define wave

if block.mechanical.time.total > 1.0 / freq
wave = 0.0

else
wave = 0.5 * ...

(1.0 - math.cos(2.0*math.pi*freq * block.mechanical.time.total))
endif

end
fish set @freq=4.0
@wave
block gridpoint apply velocity-y 0
block gridpoint apply bulk 2.0E7 shear 1.0E7 density 1000.0
block gridpoint apply visc-x range pos-x 0 1 pos-y -0.1 0.1
block edge apply stress 0.0 -200000.0 0.0 history @wave ...

range pos-y -0.1 0.1
block gridpoint history velocity-x 0.5 0.0
block gridpoint history velocity-x 0.5 25.0
block gridpoint history velocity-x 0.5 50.0
block mechanical history time-total
block mechanical damping 0.0 0.0
model save ’wave1.sav’
;
block cycle time 1.7
model save ’wave2.sav’
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Figure 4.2 Primary and reflected waves in a bar: stress input through a quiet
boundary

4.3.1.2 Baseline Correction

If a “raw” acceleration or velocity record from a site is used as a time history, the UDEC model may
exhibit continuing velocity or residual displacements after the motion has finished. This arises from
the fact that the integral of the complete time history may not be zero. For example, the idealized
velocity waveform in Figure 4.3(a) may produce the displacement waveform in Figure 4.3(b) when
integrated. The process of “baseline correction” should be performed, although the physics of the
UDEC simulation usually will not be affected if it is not done. It is possible to determine a low
frequency wave (for example, Figure 4.3(c)) which, when added to the original history, produces a
final displacement which is zero (Figure 4.3(d)). The low frequency wave in Figure 4.3(c) can be a
polynomial or periodic function, with free parameters that are adjusted to give the desired results.

Baseline correction usually applies only to complex waveforms derived, for example, from field
measurements. When using a simple, synthetic waveform, it is easy to arrange the process of
generating the synthetic waveform to ensure that the final displacement is zero. Normally, in
seismic analysis, the input wave is an acceleration record. A baseline-correction procedure can
be used to force both the final velocity and displacement to be zero. Earthquake engineering texts
should be consulted for standard baseline correction procedures.
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Figure 4.3 The baseline correction process

An alternative to baseline correction of the input record is to apply a displacement shift at the end of
the calculation if there is a residual displacement of the entire model. This can be done by applying
a fixed velocity to the mesh to reduce the residual displacement to zero. This action will not affect
the mechanics of the deformation of the model. Computer codes to perform baseline corrections
are available from several Internet sites (e.g., http://nsmp.wr.usgs.gov/processing.html).

4.3.1.3 Quiet Boundaries

The modeling of geomechanics problems involves media which, at the scale of the analysis, are
better represented as unbounded. Deep underground excavations are normally assumed to be
surrounded by an infinite medium, while surface and near-surface structures are assumed to lie on
a half-space. Numerical methods relying on the discretization of a finite region of space require
that appropriate conditions be enforced at the artificial numerical boundaries. In static analyses,
fixed or elastic boundaries (e.g., represented by boundary-element techniques) can be realistically
placed at some distance from the region of interest. In dynamic problems, however, such boundary
conditions cause the reflection of outward propagating waves back into the model, and do not allow
the necessary energy radiation. The use of a larger model can minimize the problem, since material
damping will absorb most of the energy in the waves reflected from distant boundaries. However,
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this solution leads to a large computational burden. The alternative is to use quiet (or absorbing)
boundaries. Several formulations have been proposed. The viscous boundary developed by Lysmer
and Kuhlemeyer (1969) is used in UDEC. It is based on the use of independent dashpots in the
normal and shear directions at the model boundaries. The method is almost completely effective
at absorbing body waves approaching the boundary at angles of incidence greater than 30◦. For
lower angles of incidence, or for surface waves, there is still energy absorption, but it is not perfect.
However, the scheme has the advantage that it operates in the time domain. Its effectiveness has
been demonstrated in both finite-element and finite-difference models (Kunar et al. 1977). A
variation of the technique proposed by White et al. (1977) is also widely used.

More efficient energy absorption (particularly in the case of Rayleigh waves) requires the use of
frequency-dependent elements, which can only be used in frequency-domain analyses (e.g., Lysmer
and Waas 1972). These are usually termed “consistent boundaries,” and involve the calculation
of dynamic stiffness matrices coupling all the boundary degrees-of-freedom. Boundary element
methods may be used to derive these matrices (e.g., Wolf 1985). A comparative study of the
performance of different types of elementary, viscous and consistent boundaries was documented
by Roesset and Ettouney (1977).

A different procedure to obtain efficient absorbing boundaries for use in time domain studies was
proposed by Cundall et al. (1978). It is based on the superposition of solutions with stress and
velocity boundaries in such a way that reflections are canceled. In practice, it requires adding the
results of two parallel, overlapping grids in a narrow region adjacent to the boundary. This method
has been shown to provide effective energy absorption, but it is difficult to implement for a blocky
system with complex geometry, and thus is not used in UDEC.

The quiet-boundary scheme proposed by Lysmer and Kuhlemeyer (1969) involves dashpots attached
independently to the boundary in the normal and shear directions. The dashpots provide viscous
normal and shear tractions given by

tn = −ρ Cp vn (4.9)

ts = −ρ Cs vs (4.10)

where vn and vs are the normal and shear components of the velocity at the boundary;
ρ is the mass density; and
Cp and Cs are the p- and s-wave velocities.

These viscous terms can be introduced directly into the equations of motion of the gridpoints lying
on the boundary. A different approach, however, was implemented in UDEC, whereby the tractions
tn and ts are calculated and applied at every timestep in the same way boundary loads are applied.
This is more convenient than the former approach, and tests have shown that the implementation
is equally effective. The only potential problem concerns numerical stability, because the viscous
forces are calculated from velocities lagging by half a timestep. In practical analyses to date,
no reduction of timestep has been required by the use of the nonreflecting boundaries. Timestep
restrictions demanded by small zones are usually more important.
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Dynamic analysis starts from some in-situ equilibrium condition. If a velocity boundary is used
to provide the static stress state, this boundary condition can be replaced by quiet boundaries; the
boundary reaction forces will be automatically calculated and maintained throughout the dynamic
loading phase. However, be careful to avoid changes in static loading during the dynamic phase.
For example, if a tunnel is excavated after quiet boundaries have been specified on the bottom
boundary, the whole model will start to move upward. This is because the total gravity force no
longer balances the total reaction force at the bottom (calculated when the boundary was changed
to a quiet one). If a stress boundary condition is applied for the static solution, a stress boundary
condition of opposite sign must also be applied over the same boundary when the quiet boundary
is applied for the dynamic phase. This will allow the correct reaction forces to be in place at the
boundary for the dynamic calculation.

Quiet boundary conditions can be assigned to deformable blocks in the x- and y-directions. The
boundary conditions are applied with the block grid apply visc-x and block grid apply visc-y com-
mands. The command block grid apply material assigns a material property number to the far-field
properties used for Eqs. (4.9) and (4.10). A quiet boundary can also be applied to a rigid block
model by first creating deformable blocks at the boundary (see Example 4.4).

4.3.1.4 Free-Field Boundaries

Seismic analysis by numerical techniques of surface structures such as dams requires the discretiza-
tion of a region of the material adjacent to the foundation. The seismic input is normally represented
by plane waves propagating upward through the underlying material. The boundary conditions at
the sides of the model must account for the free-field motion which would exist in the absence of the
structure. In some cases, elementary lateral boundaries may be sufficient. For example, if only a
shear wave were applied on AC (shown in Figure 4.4), it would be possible to fix the boundary along
AB and CD in the y-direction only (see the example in Section 4.5.2). These boundaries should be
placed at sufficient distances to minimize wave reflections and achieve free-field conditions. For
soils with high material damping, this condition can be obtained with a relatively small distance
(Seed et al. 1975). However, when the material damping is low, the required distance may lead to an
impractical model. An alternative procedure is to “enforce” the free-field motion in such a way that
boundaries retain their nonreflecting properties (i.e., outward waves originating from the structure
are properly absorbed). This approach was used in the continuum finite-difference code NESSI
(Cundall et al. 1980). A technique of this type was developed for UDEC. It involves the execution
of a one-dimensional free-field calculation in parallel with the main system analysis. The lateral
boundaries are coupled to the free-field grid by viscous dashpots to simulate a quiet boundary (see
Figure 4.4), and the unbalanced forces from the free-field grid are applied to the deformable-block
boundary at the boundary gridpoints. Both conditions are expressed in Eqs. (4.11) and (4.12), which
apply to the left-hand boundary. Similar expressions may be written for the right-hand boundary.

Fx = −ρCp(vm
x − vff

x ) + σ ff
xx�Sy (4.11)

Fy = −ρCs(v
m
y − vff

y ) + σ ff
xy�Sy (4.12)
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where ρ = density of material along vertical model boundary;

Cp = p-wave speed at the left-hand boundary;

Cs = s-wave speed at the left-hand boundary;

�Sy = mean vertical zone size at boundary gridpoint;

vm
x = x-velocity of gridpoint in deformable block at left boundary;

vm
y = y-velocity of gridpoint in deformable block at left boundary;

vff
x = x-velocity of gridpoint in left free field;

vff
y = y-velocity of gridpoint in left free field;

σ ff
xx = mean horizontal free-field stress at gridpoint; and

σ ff
xy = mean free-field shear stress at gridpoint.

In this way, plane waves propagating upward suffer no distortion at the boundary because the free-
field grid supplies conditions that are identical to those in an infinite model. If the deformable-block
model is uniform, and there is no surface structure, the lateral dashpots are not exercised because
the free-field grid executes the same motion as the main model. However, if the main model motion
differs from that of the free field (due, say, to a surface structure that radiates secondary waves),
then the dashpots act to absorb energy in a manner similar to that of quiet boundaries.
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Figure 4.4 Model for seismic analysis of surface structures and free-field
mesh

A free-field boundary is invoked with the block dynamic free-field command. The free field is
created, and in-situ conditions prior to the dynamic analysis are assigned to the free field. Note that
the free-field boundary conditions require that lateral boundaries of the main model must be vertical
and straight. The free field is also connected to the main model with the block dynamic free-field
command. The free-field grid can only be connected to deformable blocks. The block dynamic
free-field command must be given prior to assigning the boundary that specifies the dynamic loading.

The free-field model consists of a one-dimensional “column” of unit width, simulating the behavior
of the extended medium. An explicit finite-difference method was selected for the model. The
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height of the free field equals the length of the lateral boundaries. It is discretized into n elements
corresponding to the zones along the lateral boundaries of the UDEC model. Element masses are
lumped at the n + 1 gridpoints. A linear variation of the displacement field is assumed within each
element; the elements are, therefore, in a state of uniform strain (and stress).

The application of the free-field boundary is illustrated in Example 4.2. A shear-stress wave is
applied to the base of the model. Figure 4.5 shows the resulting x-velocity at the top of the model
at different locations in the free field and the main block.

Example 4.2 Shear wave loading of a model with free-field boundaries

model new
;File: ffield.dat
model title ’Shear wave propagation in a vertical column with free-field’
block tolerance corner-round-length 1.6E-2
block create polygon 0 0 0 10 16 10 16 0
block zone gen quad 1.0
block zone group ’block’
block zone cmodel assign elastic density 2.5E-3 bulk 6.667E4 shear 4E4 ...

range group ’block’
model gravity 0.0 -10.0
block gridpoint apply velocity-x 0 range pos-x -0.1 0.1 pos-y -0.1 10.1
block gridpoint apply velocity-x 0 range pos-x 15.9 16.1 pos-y -0.1 10.1
block gridpoint apply velocity-y 0 range pos-x -0.1 16.1 pos-y -0.1 0.1
block solve ratio 1.0E-5
model save ’ffield1.sav’
;
;
block edge apply dynamic-free-field
block gridpoint apply bulk 66667.0 shear 40000.0 density 0.0025
block gridpoint apply visc-x visc-y range pos-y -0.1 0.1
fish define wave

wave = 0.5 * (1.0 - math.cos(2*math.pi*block.mech.time.total/period))
end
fish set @period 0.015
block edge apply stress 0.0 -1.0 0.0 history @wave range pos-y -0.1 0.1
block mechanical time 0
block gridpoint history velocity-x 0.0 10.0
block gridpoint history velocity-x 7.6 10.0
block gridpoint history velocity-x 16.0 10.0
block dynamic free-field history velocity-x 10 2
block mechanical history time-total
block mechanical damping 0.0 0.0
fish hist @wave
block cycle time 0.02
model save ’ffield2.sav’
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Figure 4.5 x-velocity histories at top of model with free-field boundaries

Example applications of the free-field boundary are also given in Section 3.6 in the User’s Guide
and Section 4 in the Example Applications.

UDEC Version 7.0



4 - 14 Special Features – Structures/Fluid Flow/Thermal/Dynamics

4.3.1.5 Deconvolution and Selection of Dynamic Boundary Conditions

Design earthquake ground motions developed for seismic analyses are usually provided as outcrop
motions, often rock outcrop motions.* However, for UDEC analyses, seismic input must be applied
at the base of the model rather than at the ground surface, as illustrated in Figure 4.6. The question
then arises, “What input motion should be applied at the base of a UDEC model in order to properly
simulate the design motion?”

The appropriate input motion at depth can be computed through a “deconvolution” analysis using
a 1D wave propagation code such as the equivalent-linear program SHAKE. This seemingly simple
analysis is often the subject of considerable confusion resulting in improper ground motion input
for UDEC models. The application of SHAKE for adapting design earthquake motions for UDEC
input is described. Input of an earthquake motion into UDEC is typically done using one of two
base types:

1. A rigid base, where an acceleration-time history is specified at the base of the
UDEC model.

2. A compliant base, where a quiet (absorbing) boundary is used at the base of
the UDEC model.

Figure 4.6 Seismic input to UDEC

For a rigid base, a time history of acceleration (or velocity or displacement) is specified for
deformable-block gridpoints (or rigid-block centroids) along the base of the model. While simple
to use, a potential drawback of a rigid base is that the motion at the base of the model is completely
prescribed. Hence, the base acts as if it were a fixed displacement boundary reflecting downward-
propagating waves back into the model. Thus, a rigid base is not an appropriate boundary for

* This section is abstracted with permission from the publication by Mejia and Dawson (2006).
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general application unless a large dynamic impedance contrast is meant to be simulated at the base
(e.g. low velocity sediments over high velocity bedrock).

For a compliant base simulation, a quiet boundary is specified along the base of the UDEC model.
See Section 4.3.1.3 for a description of quiet boundaries. Note that if a history of acceleration is
recorded at a point along the quiet base, it will not necessarily match the input history. The input
stress-time history specifies the upward-propagating wave motion in to the UDEC model, but the
actual motion at the base will be the superposition of the upward motion and the downward motion
reflected back from the UDEC model.

SHAKE (Schnabel et al. 1972) is a widely used 1D wave propagation code for site response
analysis. SHAKE computes the vertical propagation of shear waves through a profile of horizontal
visco-elastic layers. Within each layer, the solution to the wave equation can be expressed as the
sum of an upward-propagating wave train and a downward-propagating wave train. The SHAKE
solution is formulated in terms of these upward- and downward-propagating motions within each
layer, as illustrated in Figure 4.7:

Figure 4.7 Layered system analyzed by SHAKE (layer properties are shear
modulus, G, density, ρ, and damping fraction, ζ )

The relation between waves in one layer and waves in an adjacent layer can be solved by enforcing
the continuity of stresses and displacements at the interface between the layers. These well-known
relations for reflected and transmitted waves at the interface between two elastic materials (Kolsky
1963) can be expressed in terms of recursion formulas. In this way, the upward- and downward-
propagating motions in one layer can be computed from the upward and downward motions in a
neighboring layer.

To satisfy the zero shear stress condition at the free surface, the upward- and downward-propagating
motions in the top layer must be equal. Starting at the top layer, repeated use of the recursion
formulas allows the determination of a transfer function between the motions in any two layers of
the system. Thus, if the motion is specified at one layer in the system, the motion at any other layer
can be computed.

SHAKE input and output is not in terms of the upward- and downward-propagating wave trains, but
in terms of the motions at a) the boundary between two layers, referred to as a “within” motion; or
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b) at a free surface, referred to as an “outcrop” motion. The within motion is the superposition of the
upward- and downward-propagating wave trains. The outcrop motion is the motion that would occur
at a free surface at that location. Hence the outcrop motion is simply twice the upward-propagating
wave-train motion. If needed, the upward-propagating motion can be computed by taking half
the outcrop motion. At any point, the downward-propagating motion can then be computed by
subtracting the upward-propagating motion from the within motion.

The SHAKE solution is in the frequency domain, with conversion to and from the time-domain
performed with a Fourier transform. The deconvolution analysis discussed below illustrates the
application of SHAKE for a linear, elastic case. SHAKE can also address nonlinear soil behavior
approximately, through the equivalent linear approach. Analyses are run iteratively to obtain shear
modulus and damping values for each layer that are compatible with the computed effective strain
for the layer.

Deconvolution for a Rigid Base – The deconvolution procedure for a rigid base is illustrated in
Figure 4.8 for a two-dimensional FLAC simulation. The same procedure also applies to UDEC.
The goal is to determine the appropriate base input motion to FLAC, such that the target design
motion is recovered at the top surface of the FLAC model. The profile modeled consists of three
20-m thick elastic layers with shear wave velocities and densities as shown in the figure. The
SHAKE model includes the three elastic layers and an elastic half-space with the same properties
as the bottom layer. The FLAC model consists of a column of linear elastic elements. The target
earthquake is input at the top of the SHAKE column as an outcrop motion. Then, the motion at the
top of the half-space is extracted as a within motion, and is applied as an acceleration-time history
to the base of the FLAC model. Mejia and Dawson (2006) show that the resulting acceleration at the
surface of the FLAC model is virtually identical to the target motion. The SHAKE within motion is
appropriate for rigid-base input because (as described above) the within motion is the actual motion
at that location, the superposition of the upward- and downward-propagating waves.

Deconvolution for a Compliant Base – The deconvolution procedure for a compliant base is illus-
trated in Figure 4.9 for a FLAC simulation. Again, the same procedure applies to UDEC. The
SHAKE and FLAC models are identical to those for the rigid body exercise, except that a quiet
boundary is applied to the base of the FLAC mesh. For application through a quiet base, the
upward-propagating wave motion (1/2 the outcrop motion) is extracted from SHAKE at the top
of the half-space. This acceleration-time history is integrated to obtain a velocity, which is then
converted to a stress history using Eq. (4.6). Again, the resulting acceleration at the surface of the
FLAC model is shown by Mejia and Dawson (2006) to be virtually identical to the target motion.
As an additional check of the computed accelerations, they also show that the response spectra
for both the compliant-base and rigid-base cases closely match the response spectra of the target
motion.
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Figure 4.8 Deconvolution procedure for a rigid base
(after Mejia and Dawson 2006)

Figure 4.9 Deconvolution procedure for a compliant base
(after Mejia and Dawson 2006)
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Although useful for illustrating the basic ideas behind deconvolution, the previous example is not
the typical case encountered in practice. The situation shown in Figure 4.10, where one or more
soil layers (expected to behave nonlinearly) overlay bedrock (assumed to behave linearly), is more
common. A FLAC or UDEC model for this case will usually include the soil layers and an elastic
base of bedrock. To compute the correct UDEC compliant base input, a SHAKE model is constructed
as shown in the figure. The SHAKE model includes a bedrock layer equal in thickness to the elastic
base of the UDEC model, and an underlying elastic half-space with bedrock properties. The target
motion is input to the SHAKE model as an outcrop motion at the top of the bedrock (point A).
Designating this motion as outcrop means that the upward-propagating wave motion in the layer
directly below point A will be set equal to 1/2 the target motion. The upward-propagating motion
for input to UDEC is extracted at Point B as 1/2 the outcrop motion.

For the compliant-base case there is actually no need to include the soil layers in the SHAKE model,
as these will have no effect on the upward-propagating wave train between points A and B. In fact,
for this simple case, it is not really necessary to perform a formal deconvolution analysis, as the
upward-propagating motion at point B will be almost identical to that at point A. Apart from an
offset in time, the only differences will be due to material damping between the two points, which
will generally be small for bedrock. Thus, for this very common situation, the correct input motion
for UDEC is simply 1/2 of the target motion. (Note that the upward-propagating wave motion must
be converted to a stress-time history using Eq. (4.6), which includes a factor of 2 to account for the
stress absorbed by the viscous dashpots.)

For a rigid-base analysis, the within motion at point B is required. Since this within motion
incorporates downward-propagating waves reflected off the ground surface, the nonlinear soil layers
must be included in the SHAKE model. However, soil nonlinearity will be modeled quite differently
in UDEC and SHAKE. Thus, it is difficult to compute the appropriate UDEC input motion for a
rigid-base analysis.

Another typical case encountered in practice is illustrated in Figure 4.11. Here, the soil profile is
deep, and rather than extending the UDEC model all the way down to bedrock, the base of the model
ends within the soil profile. Note that the model must be extended to a depth below which the soil
response is essentially linear. Again, the design motion is input at the top of the bedrock (point A)
as an outcrop motion, and the upward-propagating motion for input to UDEC is extracted at point
B. As in the previous example, for a compliant-base analysis there is no need to include the soil
layers above point B in the SHAKE model. These layers have no effect on the upward-propagating
motion between points A and B. Unlike the previous case, the upward-propagating motion can be
quite different at points A and B, depending on the impedance contrast between the bedrock and
linear soil layer. Thus, it is not appropriate to skip the deconvolution analysis and use the target
motion directly.

A rigid base is only appropriate for cases with a large impedance contrast at the base of the model.
However, the use of SHAKE to compute the required input motion for a rigid base of a UDEC model
leads to a good match between the target surface motion and the surface motion computed by UDEC,
only for a model that exhibits a low level of nonlinearity. The input motion already contains the
effect of all layers above the base, because it contains the downward-propagating wave.
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Figure 4.10 Compliant-base deconvolution procedure for a typical case
(after Mejia and Dawson 2006)

Figure 4.11 Compliant-base deconvolution procedure for another typical case
(after Mejia and Dawson 2006)
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A different approach must be taken if a UDEC model with a rigid base is used to simulate more
realistic systems (e.g., sites that exhibit strong nonlinearity, or the effect of a surface or embedded
structure). In the first case, the real nonlinear response is not accounted for by SHAKE in its estimate
of base motion. In the second case, secondary waves from the structure will be reflected from the
rigid base, causing artificial resonance effects.

A compliant base is almost always the preferred option because downward-propagating waves are
absorbed. In this case, the quiet-base condition is selected, and only the upward-propagating wave
from SHAKE is used to compute the input stress history. By using the upward-propagating wave
only at a quiet UDEC base, no assumptions need to be made about secondary waves generated by
internal nonlinearities or structures within the grid, because the incoming wave is unaffected by
these; the outgoing wave is absorbed by the compliant base.

Although the presence of reflections from a rigid base is not always obvious in complex nonlin-
ear UDEC analyses, they can have a major impact on analysis results, especially when cyclic-
degradation or liquefaction-soil models are employed. Mejia and Dawson (2006) present examples
from two-dimensional FLAC simulations that illustrate the nonphysical wave reflections calculated
in models with a rigid base. One example, shown in Figure 4.12, demonstrates the difficulty with a
rigid boundary. The nonphysical oscillations that result from a rigid base are shown by comparison
to results for a compliant base in Figure 4.13. The inputs in both cases (rigid and compliant) were
derived by deconvoluting the same surface motion.

Figure 4.12 Embankment analyzed with a rigid and compliant base
(after Mejia and Dawson 2006)

Figure 4.13 Computed accelerations at crest of embankment
(after Mejia and Dawson 2006)
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4.3.1.6 Hydrodynamic Pressures

The dynamic interaction between water in a reservoir and a concrete dam can have a significant
influence on the performance of the dam during an earthquake. Westergaard (1933) established
a mathematical basis for procedures to represent this interaction, and this approach is commonly
used in engineering practice. Although the advent of computers has enabled numerical solution
of coupled differential equations of fluid-structure systems, the formula proposed by Westergaard
is widely used for stability analysis of smaller dams, and preliminary calculations in the design of
large dams.

Figure 4.14 Hydrodynamic pressure acting on a rigid dam with a vertical
upstream face

The hydrodynamic pressure acting on a rigid concrete dam over a reservoir height, H , is depicted
in Figure 4.14. The pressure can be derived from the equation of motion for a fluid. The equation
of motion for a fluid with small Reynold’s number can be written as

c2
[∂2�

∂x2
1

+ ∂2�

∂x2
2

]
= ∂2�

∂t2
(4.13)

where c is the speed of sound in water, and � is the velocity potential. The water pressure can be
written as a function of the velocity potential:

p = ρw

∂�

∂t
(4.14)

where ρw is the density of water.
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Additional assumptions are made, to simplify the loading condition:

1. The water is assumed to be incompressible, which reduces Eq. (4.13) to the Laplace

equation: ∂2�

∂x2
1

+ ∂2�

∂x2
2

= 0.

2. The free surface of the reservoir is assumed to be at rest. Thus, ∂�
∂t

= 0 at x2 = H .

3. The reservoir is assumed to be infinitely long. Therefore, as x1 → ∞, � → 0.

4. Hydrodynamic motion is assumed to be horizontal only: ∂�
∂x2

= 0 at x2 = 0.

5. The upstream face of the dam is vertical and the dam is rigid: ∂�
∂x1

= f (t) at x1 = 0.

The solution of Eq. (4.13) with the above assumptions can be obtained for an arbitrary acceleration,
ẍ0(t), in the form of an infinite Fourier series:

p(0, x2, t) = 8ẍ0(t)ρwH

∞∑
n=1

(−1)n+1

((2n − 1)π)2
e

−(2n−1)x1
4H cos

( (2n − 1)x2

4H

)
(4.15)

Eq. (4.15) can be approximated as

p(0, x2, t) = ρwẍ0(t)H
Cm

2

[
1 − x2

2

H 2
+

√
1 − x2

2

H 2

]
(4.16)

where Cm = 0.743 and ẍ is the horizontal acceleration at the dam face.

Eq. (4.16) is implemented in UDEC by adjusting the gridpoint mass on the upstream face of the dam
to account for the hydrodynamic pressure. The equivalent pressure, p̄, resulting from the inertial
forces associated with the gridpoint and the hydrodynamic pressure of the water in the reservoir,
averaged over the area associated with the gridpoint, can be written as

p̄(0, x2, t) = ρecẍ0(t)
Ag

�x2
(4.17)

where Ag is the area associated with the gridpoint, and �x2 is the contact length on the upstream
face of the dam through which the water load is applied for the gridpoint.
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ρec is the equivalent density of the gridpoint and is given by

ρec = ρc + ρsc (4.18)

where

ρsc = ρw

H�x2

Ag

Cm

2

[
1 − x2

2

H 2
+

√
1 − x2

2

H 2

]
(4.19)

ρc is the density of concrete such that the gridpoint mass is given by mg = Agρc. The scaled
gridpoint mass msg = Agρec is used only for the motion calculation in the horizontal direction; the
effect of the increased mass does not influence the vertical forces.

The gridpoint mass is adjusted by adding the term (as determined from Eq. (4.19)) to account for
the hydrodynamic pressure. The FISH gridpoint variable block.gridpoint.dynamic.mass is available
to store the gridpoint mass adjustment. The FISH function wester is provided to apply the
hydrodynamic pressures to a vertical dam face. The FISH function requires the following input:

dx x1 component of the unit vector pointing in the direction
of the water

dy x2 component of the unit vector pointing in the direction
of the water

height height of the water in the reservoir

yb x2 coordinate of the base of the reservoir

den w density of water

c m pressure coefficient = 0.743

Note that this scheme for applying hydrodynamic loading can only be used when a dynamic motion
is acting in the horizontal direction. The scheme does not apply for a case with vertical dynamic
loading.

A simple example is presented to illustrate the effect of hydrodynamic pressures on a concrete dam.
The dynamic loading is applied in two different ways. First, the dam is subjected to a dynamic
loading without taking into account the hydrodynamic pressure. Then, the hydrodynamic pressure
is applied as a boundary condition by means of the Westergaard scaling of the gridpoint mass, as
described above. Figure 4.15 shows the model for these loading cases. The dynamic loading is a
velocity sine wave applied to the base of the model. The model is first brought to a static equilibrium
state with the reservoir loading applied along the upstream vertical face of the dam.
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Figure 4.15 Dam model with hydrodynamic pressure boundary on upstream
face

The dynamic loading is applied for a period of 10 seconds. The horizontal displacement at the top
of the dam at the upstream face is monitored for both cases. The results are plotted for comparison
in Figure 4.16. These results illustrate the effect on displacement of the hydrodynamic pressures.
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Figure 4.16 Comparison of x-displacement at top of dam
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Example 4.3 Hydrodynamic pressure acting on a dam

model new
;File:hydrodyn.dat
; Application of hydrodynamic pressure to dam face
model Title ’Hydrodynamic Pressure on Dam’
block tolerance corner-round-length 2E-2
block tolerance minimum-edge-length 4E-2
block create polygon 30,40 30,59 35,59 50,40
block zone gen quad 1.0
block zone group ’dam’
block zone cmodel assign elastic density 2E3 bulk 1E8 shear 3E7 ...

range group ’dam’
bl grid app velocity-x 0 range pos-x 29,51 pos-y 39.9,40.1
bl grid app velocity-y 0 range pos-x 29,51 pos-y 39.9,40.1
bl edg app stress -590000.0,0.0,0.0 gradient-x 0.0,0.0,0.0 ...
gradient-y 10000.0,0.0,0.0 range pos-x 29.9,30.1 pos-y 39.9,59.1

block mech gravity=0.0 -10.0
block largestrain off
block solve
model save ’w1.sav’

;
; without hydrodynamic pressure
block mech damping rayleigh 0.0 0.0
block mech time 0
block gridpoint reset vel disp
call ’sine_wave.fis’
fish set @freq=1
@sine_wave
block gridpoint history disp-x 30.0,59.0
fish history @sine_wave
block mech hist time-total
bl grid app velocity-y 0 range pos-x 29.9,50.1 pos-y 39.9,40.1
bl grid app velocity-x 1 history=@sine_wave ...

range pos-x 29.9,50.1 pos-y 39.9,40.1
block cycle time 10.0
call ’tabtofile.fis’
history export 1 table 1
history export 3 table 3
fish set @filename=’table1.dat’
fish set @tabin 1
@tabtofile
model save ’w2.sav’
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model restore ’w1.sav’
; with hydrodynamic pressure
block mech time 0
block gridpoint reset vel disp
block mech damping rayleigh 0.0 0.0
call ’wester.fis’
fish set @dx=-1
fish set @dy=0
fish set @height=19
fish set @yb=40
fish set @c_m=0.743
fish set @den_w=1000
@westergaard
call ’sine_wave.fis’
fish set @freq=1
@sine_wave
block gridpoint history disp-x 30.0,59.0
fish history @sine_wave
block mech hist time-total
bl grid app velocity-y 0 range pos-x 29.9,50.1 pos-y 39.9,40.1
bl grid app velocity-x 1 history=@sine_wave ...

range pos-x 29.9,50.1 pos-y 39.9,40.1
block cycle time 10.0

history export 1 table 2
history export 3 table 3
call ’tabtofile.fis’
fish set @filename=’table2.dat’
fish set @tabin 2
@tabtofile
model save ’w3.sav’

model new
;compare results
call ’table1.dat’ suppress
call ’table2.dat’ suppress
table 1 label ’UDEC - No Water’
table 2 label ’UDEC - hydrodynamic pressure’
model save ’compare.sav’
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4.3.2 Wave Transmission

4.3.2.1 Accurate Wave Propagation

The physical stiffness of joints in-situ can have a substantial influence on seismic wave propagation.
Myer et al. (1990) present field and laboratory test results that demonstrate the effect of the stiffness
of dry natural fractures in rock on high frequency attenuation and changes in travel time of the seismic
wave. It can be important to represent this effect in the discontinuum model if the wave transmission
is be to modeled accurately. However, be careful to not introduce a numerical distortion of the wave
that could mask the actual effect of the joints on wave propagation.

Numerical distortion of the propagating wave can occur in a dynamic analysis, whether it is based
on a continuum or discontinuum program, as a function of the modeling conditions. Both the
frequency content of the input wave and the wave-speed characteristics of the system will affect the
numerical accuracy of wave transmission. Kuhlemeyer and Lysmer (1973) show that for accurate
representation of wave transmission through a model, the spatial element size, �l, must be smaller
than approximately one-tenth to one-eighth of the wavelength associated with the highest frequency
component of the input wave – i.e.,

�l ≤ λ

10
(4.20)

whereλ is the wavelength associated with the highest frequency component that contains appreciable
energy. For discontinuum analysis involving rigid blocks, this also applies to joint spacing (or block
size).

The wavelength can be calculated from the wave speed by using Eqs. (4.29), (4.7) and (4.8) for
an elastic-continuum system. For a discontinuum system containing a single set of planar joints
oriented normal to the compression wave, and in which the solid material is rigid (or much stiffer
than the joints), then the wave speed is only a function of joint spacing and stiffness – i.e.,

Cp =
√

skn

ρ
(4.21)

where s = joint spacing;

kn = joint normal stiffness; and

ρ = mass density.

The relations can be extended to multiple-jointed media by calculating the wave speeds using
closed-form solutions that have been developed to calculate effective elastic moduli as a function
of the elastic moduli of the solid and the stiffnesses and spacings of the joints (see Section 3.8.2 in
the User’s Guide).
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Physically measured values for normal and shear stiffnesses of a geologic structure (such as joints,
faults, bedding planes, etc.) are not generally available. It is often necessary to back-calculate
properties based on measured values for the elastic deformation properties of the intact material
and the wave speed through the jointed system, using the formulae referenced in Section 3.8.2 in
the User’s Guide. These relations can be used to provide reasonable estimates for joint stiffness
properties in UDEC to produce the measured shear and compressional wave speeds of the system.

In order to achieve an accurate representation of a stress wave through a distinct element model,
particularly when the joint spacing is variable, the blocks should be made deformable to accom-
modate the element size restriction imposed by frequency and wavelength. This is accomplished
in UDEC (as discussed in Section 1 in Theory and Background) by subdividing each block into
a mesh of finite difference zones. These zones are then subject to the Kuhlemeyer and Lysmer
restriction.

The effect of model conditions on numerical distortion of wave transmission is demonstrated by a
simple analysis of a column of blocks subjected to an impulse load applied at the base (Figure 4.17).
The block sizes range from approximately 1 m to 5 m (average size of 2.8 m), the contacts between
blocks have a linearly elastic behavior, and the p-wave speed for the system is 4470 m/sec. A
triangular-shaped impulse load, with a maximum frequency of approximately 200 Hz, is applied
at the base (the solid curve in Figures 4.18 and 4.20). The wavelength associated with the highest
frequency of this system is 22.4 m; thus, according to Kuhlemeyer and Lysmer, in order to transmit
this wave without distortion, the element size must not exceed approximately 2 m.

A rigid block analysis is done with a constant contact normal stiffness used to produce an average
wave speed of 4470 m/sec (based on the average joint spacing). A highly distorted velocity history is
calculated at the top of the column, as seen by the dashed curve in Figure 4.18. This distortion can be
reduced for this problem by varying the normal stiffness locally to keep the wave speed constant at
contacts between blocks. However, in general, the calculation of effective (local) normal stiffnesses
becomes extremely complex for a multiply jointed system, making this approach impractical.

A deformable block analysis is performed with the maximum size of the finite difference zones
smaller than 2 m (see Figure 4.19). The elastic moduli for the blocks and the contact stiffness are
calculated to produce the given p-wave speed. The distortion in the wave at the top of the column
is now essentially eliminated, as indicated in Figure 4.20. The elastic deformation parameters
represent the physical properties of the blocks and contacts separately in this case, and do not have
to be adjusted locally.

The data file for this model is contained in Example 4.4.
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Figure 4.17 Column of variable-sized blocks subjected to triangular-shaped
impulse load at base

Figure 4.18 Input wave (solid) at base and calculated wave (dashed) at top of
column of rigid block model
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Figure 4.19 Column of variable-sized blocks subdivided into finite difference
zones

Figure 4.20 Input wave (solid) at base and calculated wave (dashed) at top of
column of deformable block model
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Example 4.4 Column of variable-sized blocks subjected to impulse load at base

model new
;file: impulse.dat
block tolerance corner-round-length 0.1
Model title ’Impulse Load with Rigid Blocks’
block create polygon 0 0 0 100 10 100 10 0
fish define var_cut

ntot = 80
nc = 1
rat = 1.08
ycut = 5.0
yloc = ycut
loop while nc < ntot

command
block cut crack 0 @yloc 10 @yloc

endcommand
if yloc < 50.0 then

ycut = ycut / rat
else

ycut = ycut * rat
endif
yloc = yloc + ycut
nc = nc + 1

endloop
end
@var_cut
block zone gen quad 20 range pos-x 0 10 pos-y 95 100
; in order to apply viscous boundary
;
; properties for rigid block model
block property material 1 density 1000
block contact property material 1 stiffness-normal 10e9 ...

stiffness-shear 10e9 coh 1e10 ten 1e10
block prop mat 1 bulk 1e10 shear 7.5e9
;
; impulse load
;
fish define find_block

_iab = block.near(5.0,3.0)
end
@find_block
;
fish define pulse

whilestepping
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_dytime = block.mechanical.time.total
ypulse = vmax / tpeak * _dytime
if _dytime > tpeak then

ypulse = vmax - (vmax / (tend - tpeak)) * (_dytime - tpeak)
endif
if _dytime > tend then

ypulse = 0.0
endif
block.vel.y(_iab) = ypulse ; velocity assigned to rigid block at base

; pulse = ypulse ; velocity history for zoned model
end
fish set @vmax = 11.0 @tpeak = 0.005 @tend = 0.06
; fix bottom block to apply impulse for rigid block model
block fix all range position-x 0 10 position-y 0 5
; velocity boundary for zoned model
; quiet boundary at top for both rigid and deformable block models
block gridpoint apply viscous-y range position-x 0 10 position-y 99 101
block edge apply property material 1
block gridpoint apply velocity-x 0.0
; monitor velocities at bottom and top
history interval 1
block gridpoint history velocity-y 0 0
block gridpoint history velocity-y 0 95
fish history @pulse
hist name 1 label ’hist label "Input Wave’
hist name 2 label ’hist label "Calculated Wave’
; add 5% stiffness damping
block mechanical damping 0.05 200 stiff
block cycle time 0.12
model sav ’rig.sav’
return
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4.3.2.2 Filtering

For dynamic input with a high peak velocity and short rise-time, the Kuhlemeyer and Lysmer
requirement may necessitate a very fine spatial mesh and a corresponding small timestep. The
consequence is that reasonable analyses may be prohibitively time- and memory-consuming. In
such cases, it may be possible to adjust the input by recognizing that most of the power for the input
history is contained in lower frequency components (e.g., use “FFT.FIS” in the FISH library in the
Help in UDEC .)

By filtering the history and removing high frequency components, a coarser mesh may be used
without significantly affecting the results.

The filtering procedure can be accomplished with a low-pass filter routine such as the fast Fourier
transform technique. For example, the unfiltered velocity record shown in Figure 4.21 represents
a typical waveform containing a very high frequency spike. The highest frequency of this input
exceeds 50 Hz but, as shown by the power spectral density plot of Fourier amplitude versus frequency
(Figure 4.22), most of the power (approximately 99%) is made up of components with frequencies
of 15 Hz or lower. It can be inferred, therefore, that by filtering this velocity history with a 15 Hz
low-pass filter, less than 1% of the power is lost. The input filtered at 15 Hz is shown in Figure 4.23,
and the Fourier amplitudes are plotted in Figure 4.24. The difference in power between unfiltered
and filtered input is less than 1%, while the peak velocity is reduced 38% and the rise time is shifted
from 0.035 to 0.09 seconds. Analyses should be performed with input at different levels of filtering
to evaluate the influence of the filter on model results.

If a simulation is run with an input history that violates Eq. (4.20), the output will contain spurious
“ringing” (superimposed oscillations) that are nonphysical, as illustrated in Figure 4.18. The input
spectrum must be filtered in this case before being applied to a UDEC model. This limitation
applies to all numerical models in which a continuum is discretized; it is not just a characteristic
of UDEC. Any discretized medium has an upper limit to the frequencies that it can transmit, and
this limit must be respected in order for the results to be meaningful. Users of UDEC commonly
apply sharp pulses or step waveforms to a UDEC grid; this is not acceptable, since these waveforms
have spectra that extend to infinity. It is a simple matter to apply, instead, a smooth pulse that has
a limited spectrum.
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Figure 4.21 Unfiltered velocity history
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Figure 4.22 Unfiltered power spectral density plot
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Figure 4.23 Filtered velocity history at 15 Hz

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

110

120

130

Frequency

F
ou

rie
r 

A
m

pl
itu

de
(T

im
es

 1
0E

9)

Figure 4.24 Results of filtering at 15 Hz
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4.3.3 Mechanical Damping

Natural dynamic systems contain some degree of damping of the vibration energy within the system;
otherwise, the system would oscillate indefinitely when subjected to driving forces. Damping is
due, in part, to energy loss as a result of internal friction in the intact material and slippage along
interfaces within the system.

UDEC uses a dynamic algorithm for solution of two general classes of mechanical problems: quasi-
static and dynamic. Damping is used in the solution of both classes of problems, but quasi-static
problems require more damping. The damping for static solutions is discussed in Section 1.2.7 in
Theory and Background.

For a dynamic analysis, the damping in the numerical simulation should attempt to reproduce the
energy losses in the natural system when subjected to dynamic loading. In soil and rock, natural
damping is mainly hysteretic (i.e., independent of frequency – see Gemant and Jackson 1937;
Wegel and Walther 1935). It is difficult to reproduce this type of damping numerically because of
at least two problems (see Cundall 1976). First, many simple hysteretic functions do not damp all
components equally when several waveforms are superimposed. Second, hysteretic functions lead
to path dependence, which makes results difficult to interpret. However, if a constitutive model that
contains an adequate representation of the hysteresis that occurs in a real material is found, then
no additional damping is necessary in a UDEC run. The current built-in models in UDEC are not
considered to model dynamic hysteresis well enough to omit additional damping completely.

In time domain programs, Rayleigh damping is commonly used to provide damping that is approx-
imately frequency-independent over a restricted range of frequencies. Although Rayleigh damping
embodies two viscous elements (in which the absorbed energy is dependent on frequency), the
frequency-dependent effects are arranged to cancel out at the frequencies of interest. Rayleigh
damping is described in Sections 4.3.3.1 through 4.3.3.3.

Alternatively, the local damping embodied in UDEC ’s static solution scheme may be used dynam-
ically, but with a damping coefficient appropriate to wave propagation. Local damping in dynamic
problems is useful as an approximate way to include hysteretic damping. However, it becomes
increasingly unrealistic as the complexity of the waveforms increases (i.e., as the number of fre-
quency components increases). Local damping cannot properly capture the energy loss of multiple
frequency cyclic loading. Local damping is described in more detail in Section 4.3.3.4.
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4.3.3.1 Rayleigh Damping

Rayleigh damping was originally used in the analysis of structures and elastic continua, to damp
the natural oscillation modes of the system. The equations, therefore, are expressed in matrix form.

A damping matrix, C, is used, with components proportional to the mass (M) and stiffness (K)
matrices:

C = α M + β K (4.22)

where α = the mass-proportional damping constant; and

β = the stiffness-proportional damping constant.

The mass-proportional term is analogous to a dashpot connecting each UDEC corner or gridpoint
to “ground.” The stiffness-proportional term is analogous to a dashpot connected across each
UDEC zone (responding to the strain rate). Although both terms are frequency-dependent, an
approximately frequency-independent response can be obtained over a limited frequency range,
with the appropriate choice of parameters, as discussed below.

For a multiple degree-of-freedom system, the critical damping ratio, ξi , at any angular frequency
of the system, ωi , can be found from (Bathe and Wilson 1976):

α + β ω2
i = 2 ωi ξi (4.23)

or

ξi = 1

2

( α

ωi

+ β ωi

)
(4.24)

The critical damping ratio, ξi , is also known as the fraction of critical damping for mode i with
angular frequency, ωi .

Figure 4.25 shows the variation of the normalized critical damping ratio with angular frequency,
ωi . Three curves are given: mass and stiffness components only, and the sum of both components.
As shown, mass-proportional damping is dominant at lower angular frequencies, while stiffness-
proportional damping dominates at higher angular frequencies. The curve representing the sum of
both components reaches a minimum at

ξmin = (α β)1/2

(4.25)

ωmin = (α/β)1/2

or
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α = ξmin ωmin

(4.26)

β = ξmin/ωmin

The center frequency is then defined as

fmin = ωmin/2π (4.27)

Note that at frequency ωmin (or fmin) (and only at that frequency), mass damping and stiffness
damping each supply half of the total damping force.
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Figure 4.25 Variation of normalized critical damping ratio with angular fre-
quency

Rayleigh damping is specified in UDEC with the parameters fmin (input parameter freq) in Hertz
(cycles per second) and ξmin (input parameter fcrit), both specified with the block mechanical
damping command.

Stiffness-proportional damping causes a reduction in the critical timestep for the explicit solution
scheme (see Eq. (4.1)). In UDEC, the internal timestep calculation takes stiffness-proportional
damping into account, but it is still possible for instability to occur if very large block deformation
occurs. If this happens, it is necessary to reduce the timestep manually (via the block mechanical
timestep-factor command). For the case shown in Figure 4.25, ωmin = 10 radians per second. It is
evident that the damping ratio is almost constant over at least a 3:1 frequency range (e.g., from 5
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to 15). Since damping in geologic media is commonly independent of frequency, as discussed in
Section 4.3.3, ωmin is usually chosen to lie in the center of the range of frequencies present in the
numerical simulation – either natural frequencies of the model or predominant input frequencies or
a combination of both. Hysteretic damping is thereby simulated in an approximate fashion.

4.3.3.2 Example Application of Rayleigh Damping

In order to demonstrate how Rayleigh damping works in UDEC, the results of the following four
damping cases can be compared; the example consists of a block sitting on a fixed block with
gravity suddenly applied. The conditions are

(a) undamped;

(b) Rayleigh damping (both mass and stiffness damping);

(c) mass damping only; and

(d) stiffness damping only.

Example 4.5 provides data corresponding to each case in turn.

Example 4.5 Block under gravity – undamped and 3 critically damped cases

model new
;file: Dampedblock.dat
block tolerance corner-round-length 0.01
block tolerance minimum-edge-length 0.02
block create polygon 0,0 0,10 10,10 10,0
block cut crack (0,5) (10,5)
block contact group ’joint’
block contact cmodel assign area stiffness-shear 5E7 ...

stiffness-normal 5E7 range group ’joint’
; new contact default
block contact cmodel default area stiffness-shear=5E7 ...

stiffness-normal=5E7
block change mat 1
block property mat 1 density 1E3
block fix vel-y range pos-x 0,10 pos-y 0,5
block mechanical gravity=0 -10
history interval 1
block gridpoint history vel-y 0.0,10.0
block gridpoint history disp-y 0.0,10.0
block mechanical hist time-total

model save ’damp1.sav’

model restore ’damp1.sav’
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; --- undamped ---
model title ’Dynamic Rayleigh Damping - Undamped’
block mechanical damping rayleigh 0.0 0.0
block cycle time 0.3
model save ’damp2.sav’

model restore ’damp1.sav’
; --- mass and stiffness damped
model title ’Dynamic Rayleigh Damping - Mass and Stiffness Damping’
block mechanical damping rayleigh 1.0 16.0
block cycle time 0.3
model save ’damp3.sav’

model restore ’damp1.sav’
; --- mass damped ---
model title ’Dynamic Rayleigh Damping - Only Mass Damping’
block mechanical damping rayleigh 2.0 16.0 mass
block cycle time 0.3
model save ’damp4.sav’

model restore ’damp1.sav’
; --- stiffness damped ---
model title ’Dynamic Rayleigh Damping - Only Stiffness Damping’
block mechanical damping rayleigh 2.0 16.0 stiffness
block cycle time 0.3
model save ’damp5.sav’

ret

In the first case, with no damping, a natural frequency of oscillation of approximately 16 Hertz is
observed (see Figure 4.26). The theoretical period of oscillation is given by

frequency = 1

2π

(kl

m

)1/2 = 15.9 cycles/second (4.28)

where l = joint length (10 m, in this case);
k = joint stiffness (50 MPa/m); and
m = mass of upper block (50,000 kg).

The problem should be critically damped if: (1) a fraction of critical damping, ξmin, of 1 is specified;
(2) the natural frequency of oscillation, fmin, of 16 Hertz is specified; and (3) both mass and stiffness
damping are used.
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The results in Figure 4.27 show that the problem is critically damped. If only mass or stiffness
damping is used, then ξmin must be doubled to obtain critical damping (since each component
contributes one-half to the overall damping). Figures 4.28 and 4.29 again show that the system is
critically damped.

Note that the timestep is different for the three damped simulations. This is a result of the influence
of stiffness-proportional damping, as discussed above.

Figure 4.26 Plot of vertical displacement versus time, for a single block con-
tacting on a rigid base with gravity suddenly applied (no damping)
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Figure 4.27 Plot of vertical displacement versus time, for a single block con-
tacting on a rigid base with gravity suddenly applied (mass and
stiffness damping)

Figure 4.28 Plot of vertical displacement versus time, for a single block con-
tacting on a rigid base with gravity suddenly applied (mass damp-
ing only)
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Figure 4.29 Plot of vertical displacement versus time, for a single block con-
tacting on a rigid base with gravity suddenly applied (stiffness
damping only)

4.3.3.3 Guidelines for Selecting Rayleigh Damping Parameters

Damping Ratio, ξmin

What is normally attempted in a dynamic analysis is the reproduction of the frequency-independent
damping of materials at the correct level. For geological materials (e.g., soils), damping commonly
falls in the range of 2 to 5% of critical; for structural systems, 2 to 10% is representative (Biggs
1964). In analyses that use one of the block plasticity models (e.g., Mohr-Coulomb), a considerable
amount of energy dissipation can occur during plastic flow. Energy dissipation can also occur
during joint slip. Thus, for many dynamic analyses that involve large block deformation or large
joint displacement, only a minimal percentage of damping (e.g., 0.5%) may be required. Further,
dissipation will increase with amplitude for stress/strain cycles that involve plastic flow or joint slip.
ξmin is adjusted to coincide with the correct physical damping ratio.

Center Frequency, fmin

Rayleigh damping is frequency-dependent but has a “flat” region that spans about a 3:1 frequency
range, as shown in Figure 4.25. For any particular problem, a spectral analysis of typical velocity
records might produce a response such as shown in Figure 4.30.*

* A spectral analysis based on a fast Fourier transform is supplied as a FISH library function in Help
inUDEC . – see “FFT.FIS.”
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Velocity
Spectrum

Frequency

Range of Predominant
Frequencies

Figure 4.30 Plot of velocity spectrum versus frequency

If the highest predominant frequency is three times greater than the lowest predominant frequency,
then there is a 3:1 span or range that contains most of the dynamic energy in the spectrum. The idea
in dynamic analysis is to adjust fmin of the Rayleigh damping so that its 3:1 range coincides with
the range of predominant frequencies in the problem. ξmin is adjusted to coincide with the correct
physical damping ratio. The “predominant frequencies” are neither the input frequencies nor the
natural modes of the system, but a combination of both. The idea is to try to get the right damping
for the important frequencies in the problem.

For many problems, the important frequencies are related to the natural mode of oscillation of the
system. Examples of this type of problem include seismic analysis of surface structures such as
dams or dynamic analysis of underground excavations. The fundamental frequency, f , associated
with the natural mode of oscillation of a system is

f = C

λ
(4.29)

where C = speed of propagation associated with the mode of oscillation; and

λ = longest wavelength associated with the mode of oscillation.

For deep underground structures, the frequency of interest is usually given by the applied input
wave. In this situation, the input wave contains the dominant frequencies.

For a continuous, elastic system (e.g., a one-dimensional elastic bar), the speed of propagation, Cp,
for p-waves is given by Eq. (4.7), and for s-waves by Eq. (4.8). If shear motion of the bar gives rise
to the lowest natural mode, then Cs is used in the above equation; otherwise, Cp is used if motion
parallel to the axis of the bar gives rise to the lowest natural mode.
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The longest wavelength (or characteristic length or fundamental wavelength) depends on boundary
conditions. Consider a solid bar of unit length with boundary conditions, as shown in Figure 4.31(a).
The fundamental mode shapes for cases (1), (2) and (3) are as shown in Figure 4.31(b). If a
wavelength for the fundamental mode of a particular system cannot be estimated in this way, then a
preliminary run may be made with zero damping (for example, see Figure 4.26). A representative
natural period may be estimated from time histories of velocity or displacement. Section 4.4.2
contains another example in which natural periods are estimated by undamped simulations.

(1) one end fixed

(2) both ends fixed

(3) both ends free

(a) boundary (end) conditions

(1) characteristic length =

(2) characteristics length =

(3) characteristic length =

4

2

2

(b) characteristic lengths or fundamental wavelengths

Figure 4.31 Comparison of fundamental wavelengths for bars with varying
end conditions
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4.3.3.4 Local Damping for Dynamic Simulations

Local damping (see Section 1 in Theory and Background) was originally designed as a way
to equilibrate static simulations. However, it has some characteristics that make it attractive for
dynamic simulations. It operates by adding or subtracting mass from a gridpoint or structural
node at certain times during a cycle of oscillation; there is overall conservation of mass, because
the amount added is equal to the amount subtracted. Mass is added when the velocity changes
sign, and subtracted when it passes a maximum or minimum point. Hence, increments of kinetic
energy are removed twice per oscillation cycle (at the velocity extremes). The amount of energy
removed, �W , is proportional to the maximum, transient strain energy, W , and the ratio �W/W
is independent of rate and frequency. Since �W/W may be related to fraction of critical damping,
D (Kolsky 1963), we obtain the expression

αL = πD (4.30)

where αL is the local damping coefficient. Thus, the use of local damping is simpler than Rayleigh
damping, because we do not need to specify a frequency. To compare the two types of damping,
we repeat Example 4.5 with 5% damping. Example 4.6 provides the data file. A similar run is
done with local damping, with the coefficient set to 0.1571 (= 0.05π ) – see Example 4.7. We
adjust the timestep for the second run to match the timestep for the first (using the block mechanical
timestep-factor command) so that we can execute the same number of steps in each to obtain the
same elapsed time. Displacement histories from the two runs are given in Figures 4.32 and 4.33,
respectively. The results are quite similar.

Example 4.6 Continuation of Example 4.5 with 5% Rayleigh damping

;file: rayldamp.dat
model rest ’damp1.sav’
;
model title ’Dynamic Damping - 5% Rayleigh Damping’
block mechanical damping rayleigh 0.05 16
block cycle time 1.2
model save ’rayl.sav’

Example 4.7 Continuation of Example 4.5 with 5% local damping

;file: localdamp.dat
model rest ’damp1.sav’

model title ’Dynamic Damping - 5% Local Damping’
block mechanical damping local 0.1571 ; pi * 0.05
block mechanical timestep-factor 0.084
block cycle time 1.2
model save ’local.sav’
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CAUTION: Local damping appears to give good results for a simple case because it is frequency-
independent and needs no estimate of the natural frequency of the system being modeled. However,
this type of damping should be treated with caution, and the results compared to those with Rayleigh
damping for each application. There is some evidence to suggest that, for complicated waveforms,
local damping underdamps the high frequency components, and may introduce high frequency
“noise.”

Local damping is not recommended for seismic simulations, because this type of damping cannot
properly represent the energy loss of multiple cyclic loading completely.

Figure 4.32 Displacement history – 5% Rayleigh damping
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Figure 4.33 Displacement history – 5% local damping

4.4 Solving Dynamic Problems

In this section, an approach for modeling dynamic problems is described. The general methodology
is described first, followed by an example application in which the various stages in the analysis
are illustrated. Section 3.6 in the User’s Guide and Section 4 in the Example Applications also
contain examples that demonstrate this approach for dynamic analysis with UDEC.

4.4.1 General Methodology

Dynamic analysis is viewed as a loading condition on the model, and as a distinct stage in a modeling
sequence, as described in Section 3.6 in the User’s Guide. A static equilibrium calculation always
precedes a dynamic analysis. There are generally four components to the dynamic analysis stage:

1. Ensure that model conditions satisfy the requirements for accurate wave trans-
mission (by adjusting zone sizes within blocks with the block zone generate
command; see Section 4.3.2). This check must be performed even before
the static solution is performed, because blocks cannot be rezoned after the
calculation starts.

2. Specify appropriate mechanical damping, representative of the problem mate-
rials and input frequency range (use the block mechanical damping command
as described in Section 4.3.3).
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3. Apply dynamic loading and boundary conditions (by using the block edge
apply or block gridpoint apply command – see Section 4.3.1). A given time
history may need to be filtered in order to comply with the requirements noted
in Section 4.3.2.

4. Set up facilities to monitor the dynamic response of the model (by using the
block gridpoint history command).

4.4.2 Illustration of Procedures: Stability of a Jointed-Rock Slope

The procedure for dynamic analysis is illustrated in Example 4.8, and then in Example 4.9. The
model is greatly simplified for rapid execution, but still demonstrates the steps in a dynamic analysis.
The example application is a stability analysis of an open cut in a jointed rock mass. The slope is
10 m high and is cut in rock containing two continuous joint sets with dip angles of 20◦ and 80◦.
The intact material is elastic, and the joints have a friction angle of 45◦. The cut is initially stable
for the given slope angle of 31◦.

The data file for the initial static loading state is given below. The stress state of the model at
equilibrium is shown in Figure 4.34.

Example 4.8 Initial conditions for the slope problem

model new
;file: slopestable.dat
model title ’Dynamic Slope Stability’
block tolerance corner-round-length 5.0E-2
block create polygon 0,-5 0,0 5,0 10,10 22,10 22,-5
block cut joint-set angle 20 trace 100 spacing 2 origin 5,0
block cut joint-set angle 80 trace 100 spacing 4 origin 5,0
block zone gen quad 4.0,4.0
block zone gen edge 4.0
block zone group ’block’
block zone cmodel assign elastic density 2.5E-3 bulk 1.6667E4 ...

shear 1E4 range group ’block’
block contact group ’joint’
block contact cmodel assign area stiffness-shear 2E5 ...

stiffness-normal 2E5 friction 45 range group ’joint’
; new contact default
block contact cmodel default area stiffness-shear=2E5 ...

stiffness-normal=2E5 friction=45
block insitu stress -0.125,0.0,-0.25 gradient-x 0.0,0.0,0.0 ...

gradient-y 0.0125,0.0,0.025
bl grid app velocity-x 0 range pos-x -0.1,0.1 pos-y -5.1,0.1
bl grid app velocity-x 0 range pos-x 21.9,22.1 pos-y -5.1,10.1
bl grid app velocity-y 0 range pos-x -0.1,22.1 pos-y -5.1,-4.9
block mechanical gravity=0 -10
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block gridpoint history disp-x 11.0,10.0
block gridpoint history disp-y 11.0,10.0
block mechanical history unbalanced
block solve ratio 1.0E-5
model save ’slope0.sav’

Figure 4.34 Initial equilibrium of slope cut in jointed rock

The slope is subjected to ground shaking as a result of shear and normal dynamic waves applied to
the base of the model. The four steps identified previously are now followed to prepare the dynamic
analysis:

1. Check Wave Transmission – The dynamic loading for this problem is given as a shear
sinusoidal velocity record. The shear wave has a frequency of 10 Hz and an amplitude
of 2 m/sec. The duration of the dynamic loading is 0.1 sec.

There are two aspects of this analysis that must be considered with respect to wave
transmission. First, as discussed in Section 4.3.2, numerical accuracy of the model is
controlled by the relation between element size (joint spacing for rigid blocks and zone
size for deformable blocks) and wavelength of peak velocities. Second, because the
wave speed is affected by the joint characteristics, the joint structure may introduce a
physically real distortion in the wave transmission.

In order to evaluate the numerical accuracy, we ignore the presence of the joint structure
by setting the joint stiffnesses to high values, based upon the limiting relation given by
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Eq. (3.7) in the User’s Guide. The shear wave speed is then calculated from the intact
block elastic moduli and is (from Eq. (4.8))

Cs = 2000 m/sec

The largest zone dimension in this model is approximately 4.5 m. Based upon Eqs. (4.29)
and (4.20), the maximum frequency that can be modeled accurately is

f = Cs

λ
= Cs

10 �l
≈ 44 Hz

Therefore, the zone size is small enough to allow waves at the input frequency to propagate
accurately.

In order to evaluate the influence of the joint structure on wave transmission, it is necessary
to have field measurements of the waveform (e.g., from accelerometer tests). Since
physically measured values for joint stiffnesses are difficult to obtain, stiffnesses can be
back-calculated to best-fit the wave transmission calculated in the model to that measured
in the field.

In this example, the joint stiffnesses are assumed to be 200 GPa/m; these stiffnesses
have a negligible effect on the wave transmission. This can be seen by setting the joint
strengths to high values and applying the input velocities to the model, without the slope
cut, and with free-field boundaries on the sides. We monitor the velocities at the bottom
and top boundaries; the results shown in Figure 4.35 illustrate that no distortion of the
wave has occurred.
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Figure 4.35 Input velocity (history 2) and calculated velocity (history 3) at top
of model without slope

2. Specify Damping – Energy is dissipated as the joints slip and separate during the dynamic
loading, which tends to make the selection of damping parameters less critical to the
outcome of the analysis. This model was run with a very small amount of Rayleigh
damping (0.1% at the natural frequency) to minimize the influence of high-frequency
components. The dominant natural frequency is defined by the input wave frequency for
this problem. This can be shown by running the model with high strength properties and
no damping, and monitoring the velocity history at different locations in the model.

3. Apply Dynamic Loading and Boundary Conditions – The base of the model is con-
sidered to be flexible, so we must convert the input velocity to shear stresses in order to
apply the dynamic loading with a quiet boundary for the flexible foundation (see Sec-
tion 4.3.1.1). A FISH function, convert, supplies the conversion factor to convert the
velocity input into stress input, based on Eq. (4.6). The boundary stress is then applied to
the base of the model in the shear direction using the block edge apply command with the
velocity wave input applied as a multiplier via the history keyword. The FISH function
wave supplies the sinusoidal velocity history defined by a 1 m/sec amplitude, 10 Hz
frequency and 0.1 sec. duration. Free-field boundaries are assigned along the left and
right boundaries to absorb energy.

4. Monitor Dynamic Response – Velocity histories are located at various locations in the
model: at the position of the applied input wave, along the slope face, and within the
interior of the model.

The data file for the dynamic stage is reproduced in Example 4.9:

Example 4.9 Dynamic excitation of the slope problem

;file: slopedy.dat
model restore ’slope0.sav’

fish def convert
c_p = math.sqrt((b_mod + (4.0 * sh_mod / 3.0)) / m_dens)
c_s = math.sqrt(sh_mod / m_dens)
norm_str = -2.0 * m_dens * c_p
shear_str = 2.0*(-2.0 * m_dens * c_s)

end
fish set @m_dens=0.0025
fish set @b_mod=16667
fish set @sh_mod=10000
@convert
fish def wave

if block.mech.time.total > env_time
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wave = 0.0
else

wave = ampl * math.sin(2.0*math.pi*freq*block.mech.time.total)
endif

end
fish set @freq =10
fish set @ampl=1.0
fish set @env_time=0.1
@wave

block edge apply dynamic-free-field
block edge property bulk=16667.0 shear=10000.0 density=0.0025
block grid apply visc-x visc-y range pos-y -5.1,-4.9
bl edg app stress 0.0,@norm_str,@norm_str history=@wave ...

range pos-y -5.1,-4.9
history reset
block mechanical reset time
block gridpoint reset disp
fish history @wave
block gridpoint history vel-x 10.0,-5.0
block gridpoint history vel-x 8.0,6.0
block gridpoint history vel-x 18.0,-2.0
block gridpoint history vel-y 10.0,-5.0
block gridpoint history vel-y 22.0,10.0
block mech hist time-total
block mechanical damping rayleigh 0.0010 10.0

model save ’slopedy.sav’

block cycle time 0.2
model save ’slope02.sav’

block cycle time 0.2
model save ’slope03.sav’

block cycle time 0.3
model save ’slope04.sav’

The response of the slope at 0.7 seconds (0.6 second after the dynamic wave is stopped) is shown in
Figure 4.36. Sliding failure of the blocks is occurring along the slope face. The x-velocity histories
in Figure 4.37 illustrate the influence of the joint structure on the input history (at x = 10, y = −5,
history 2), the movement at the slope face (at x = 8, y = 6, history 3), and the return to equilibrium
at a position remote from the slope (at x = 20, y = −20, history 4). History 3 velocity levels off
at a nonzero value, indicating that the slope block is moving. Note that there are still some high
frequency components in the velocity response.
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Figure 4.36 Slope failure resulting from dynamic loading

Figure 4.37 x-velocity histories at base, slope face and remote from slope
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4.5 Validation Examples

Several examples are presented to validate and demonstrate the dynamic option in UDEC. The data
files for these examples are contained in the “ITASCA\UDEC700\datafiles\Dynamic” directory.

4.5.1 Natural Periods of an Elastic Column

A column of elastic material resting on a rigid base has natural periods of vibration, depending on
the mode of oscillation and the confining conditions. Three cases are examined: an unconfined
column, a confined column in compression and a column in shear.

The column is loaded by applying gravity in either thex- ory-direction and observing the oscillations
with zero damping. The case of confined compression is modeled by inhibiting lateral displacement
along the vertical boundaries, which prevents lateral deformation of the model. For unconfined
compression, lateral displacement is not inhibited. For the column in shear, vertical motion is
inhibited, to eliminate bending modes; the loading is applied laterally.

The theoretical value for natural period of oscillation, T , is given by Eq. (4.31):

T = 4L

√
ρ

E∗ (4.31)

where E∗ is the appropriate modulus selected from Table 4.1.

Table 4.1 Moduli appropriate to various deformation modes

Confined Compression Unconfined Compression Shear

K + (4/3) G 4G

[
(1/3) G+K
K+(4/3) G

]
G

(plane strain, Young’s modulus)

2.5714 × 104 1.4286 × 104 1.0 × 104

UDEC data files for the three cases are given in Examples 4.10, 4.11 and 4.12. Material properties
are given below.
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Table 4.2 Material properties

Properties Symbol Value Comment

bulk modulus K 2.0 × 104 for compression tests

shear modulus G 0.428562 × 104

Poisson’s ratio ν 0.4

bulk modulus K 1.0 × 104 for shear tests

shear modulus G 1.0 × 104

Poisson’s ratio ν 0.125

density ρ 1.0

applied gravity gy −1.0 for compression tests

gx 0.1 for shear tests

column height L 800

column width W 100

Table 4.3 compares the theoretical periods and calculated (UDEC) natural periods of oscillation,
averaged over several periods by the FISH function crossings – see Example 4.13.

Table 4.3 Comparison of theoretical and calculated (UDEC)
dynamic period T of oscillation for three modes

Confined Unconfined
Shear

Compression Compression

Theoretical 19.96 26.77 32.00

UDEC 19.68 25.62 32.05
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Example 4.10 Data file for confined compression

model new
;file: confined.dat
block tolerance corner-round-length 0.8
block create poly -50,-400 -50,400 50,400 50,-400
block cut joint-set angle 0 trace 100 spacing 100 origin 0,0 join
block zone gen quad 200.0
block mechanical damping rayleigh 0.0 0.0
block zone group ’block’
block zone cmodel assign elastic density 1 bulk 2E4 shear 4.28562E3 ...

range group ’block’
block mechanical gravity=0 -1
history interval 1
block gridpoint history velocity-y 50.0,400.0
block gridpoint apply velocity-y 0 range pos-x -51,51 pos-y -401,-399
block gridpoint apply velocity-x 0
block cycle time 100.0
call ’avper.fis’
model save ’confined.sav’

Example 4.11 Data file for unconfined compression

model new
;file: unconfined.dat
block tolerance corner-round-length 0.8
block create polygon -50,-400 -50,400 50,400 50,-400
block cut joint-set angle 0 trace 100 spacing 100 origin 0,0 join
block zone gen quad 200.0
block mechanical damping rayleigh 0.0 0.0
model save ’base.sav’

block zone group ’block’
block zone cmodel assign elastic density 1 bulk 2E4 shear 4.28562E3 ...

range group ’block’
block mechanical gravity=0 -1
history interval 1
block gridpoint history vel-y 50.0,400.0
block gridpoint apply velocity-y 0 range pos-x -51,51 pos-y -401,-399
block cycle time 100.0
call ’avper.fis’
model save ’unconfined.sav’
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Example 4.12 Data file for shear

model new
;file: shear.dat
block tolerance corner-round-length 0.8
block create polygon -50,-400 -50,400 50,400 50,-400
block cut joint-set angle 0 trace 100 spacing 100 origin 0,0 join
block zone gen quad 200.0
block mechanical damping rayleigh 0.0 0.0
block zone group ’block’
block zone cmodel assign elastic density 1 bulk 1E4 shear 1e4 ...

range group ’block’
block mechanical gravity=1 0
history interval 1
block gridpoint history vel-x 50.0,400.0
block gridpoint apply velocity-x 0 range pos-x -51,51 pos-y -401,-399
block gridpoint apply velocity-y 0
block cycle time 100.0
call ’avper.fis’
model save ’shear.sav’

Example 4.13 Listing of “avper.fis”: function to compute average period

hist export 1 table 1 ; Note: velocity history must be number 1
fish define crossings

_dytime = block.mechanical.time.total
ndif = 0
dif = 0.0
t_cross_old = 0.0
sign = 1.0
delta_t = block.mechanical.timestep
loop n (1,global.step)

if math.sgn(table.y(1,n)) # math.sgn(sign)
sign = -sign
t_cross = (n - 1) * delta_t
if t_cross_old # 0.0

dif = dif + t_cross - t_cross_old
ndif = ndif + 1

endif
t_cross_old = t_cross

endif
end_loop
ii = io.out(’ Crossings = ’+string(ndif))
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ii = io.out(’ Average period = ’+string(2.0*dif/ndif))
end
@crossings
;

4.5.2 Slip Induced by Harmonic Shear Wave

This problem concerns the effects of a planar discontinuity on the propagation of an incident
shear wave. Two homogeneous, isotropic, semi-infinite elastic regions, separated by a planar
discontinuity with a limited shear strength, are shown in Figure 4.38. A normally incident, plane
harmonic, shear wave will cause slip at the discontinuity, resulting in frictional energy dissipation.
Thus, the energy will be reflected, transmitted and absorbed at the discontinuity. The problem is
modeled with UDEC, and the results are used to determine the coefficients of transmission, reflection
and absorption. These coefficients are compared with ones given by an analytical solution (Miller
1978).

B

UT

A
UI UR

Figure 4.38 Transmission and reflection of incident harmonic wave at a dis-
continuity

The coefficients of reflection (R), transmission (T ) and absorption (A) given by Miller (1978) for
the case of uniform material are

R =
√

ER

EI

(4.32)

T =
√

ET

EI

(4.33)
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A =
√

1 − R2 − T 2 (4.34)

where EI , ET and ER represent the energy flux per unit area per cycle of oscillation associated
with the incident, transmitted and reflected waves, respectively. The coefficient A is a measure of
the energy absorbed at the discontinuity. The energy flux EI is given by

EI =
∫ t1+T

t1

σs vs dt (4.35)

where T = (2π)/ω = the period for the incident wave;

σs = shear stress;

vs = particle velocity in the x-direction; and

ω = frequency of incident wave (radian/sec).

For elastic media,

σs = ρ c vs (4.36)

Hence,

EI = ρ c

∫ t1+T

t1

v2
s dt (4.37)

in which c is the velocity of the propagating shear wave.

The energy flux of the incident wave, EI , is evaluated at point A (see Figure 4.38) for no slip at the
discontinuity. The energy flux of the transmitted wave, ET , is evaluated at point B for the case of
slip at the discontinuity. The energy flux of the reflected wave, ER , is calculated by determining
the difference of velocities in two cases: slip and no slip.

Figure 4.39 shows the numerical model, which consists of two sub-grids connected by an interface
EF, which has high stiffness and simulates the discontinuity. The conditions used are as follows.

Boundary Conditions

• Nonreflecting viscous boundaries are located at GH and CD.

• Vertical motion is prevented along lateral boundaries GC and DH.

Loading Conditions
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• Shear stresses corresponding to the incident wave are applied along CD.

• The maximum stress of the incident wave is 1 MPa and the frequency is 1 Hz.

Material Conditions

• elastic media

ρ = 2.65 × 103 kg/m3

K = 16,667 MPa

G = 10,000 MPa

• interface

kx = ks = 10,000 MPa/m

C = cohesion = 2.5 MPa for no-slip = 0.5, 0.1, 0.02 MPa for slip case

Note that the magnitude of the incident wave must be doubled in the numerical model to account
for the simultaneous presence of the nonreflecting boundary (see Section 4.3.1.1).

Example 4.14 provides a data file that makes four complete simulations of the problem: the first
simulation is for a fully elastic case, and the remaining simulations correspond to the various values
of cohesion. Computed values for R, T and A are written to the log file “UDEC.LOG” if the model
is run in command-driven mode. If run in GIIC mode, the computed values are displayed in the
Console pane.

The initial assumption of an elastic discontinuity is achieved by assigning a high cohesion (2.5 MPa,
in this case) to the interface. Figure 4.40 shows the time variation of shear stress near points A and
B. From the amplitude of the stress histories at A and B, it is clear that there is perfect transmission
of the wave across the discontinuity. It is also clear from Figure 4.40 that the viscous boundary
condition provides perfect absorption of normally incident waves. Following the execution of the
elastic case, the velocity history at point A is saved in table 1, to be used later for calculating EI

used in the equations for energy coefficients.

The cohesion of the discontinuity is then set, successively, to 0.5, 0.1 and 0.02 MPa to permit slip to
occur. The recorded shear stresses at points A and B for the three cases are shown in Figures 4.41,
4.42 and 4.43, respectively. The peak stress at point A is the superposition of the incident wave and
the wave reflected from the slipping discontinuity. It can be seen in Figures 4.41 through 4.43 that
the shear stress of point B is limited by the discontinuity strength.

After each inelastic simulation, the velocity histories at points A and B are saved in tables 2 and
3, and the energy flux and coefficients R, T and A are computed by the FISH function energy
and written to the log file. All conditions are then reset to zero, and requested histories are deleted,
in preparation for the next simulation; this is done in function common. It was determined that at
least five cycles of the input wave were necessary before the computed coefficients settled down
to steady-state values. Even then, there is a periodic fluctuation in the values. In order to obtain
mean values, the coefficient values were averaged over the final 100 timesteps: the FISH variable
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i mean controls the step number at which this averaging process starts. Figure 4.44 compares the
numerical results with the exact solution for the coefficients for three values of the dimensionless
parameter:

ω γ U

τs

where τs = discontinuity cohesion;

U = displacement amplitude of the incident wave;

γ =
√

ρ G; and

ω = frequency of incident wave (1 Hz).

The displacement amplitude for the incident wave (U ) was obtained by monitoring the horizontal
displacement at point A for non-slipping discontinuities. As can be seen, the UDEC results agree
well with the analytical solution.
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Figure 4.39 Problem geometry and boundary conditions for the problem of
slip induced by harmonic shear wave
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Figure 4.40 Time variation of shear stress at points A and B for elastic dis-
continuity (cohesion = 2.5 MPa)

Figure 4.41 Time variation of shear stress at points A and B for slipping
discontinuity (cohesion = 0.5 MPa)
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Figure 4.42 Time variation of shear stress at points A and B for slipping
discontinuity (cohesion = 0.1 MPa)

Figure 4.43 Time variation of shear stress at points A and B for slipping
discontinuity (cohesion = 0.02 MPa)
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Figure 4.44 Comparison of transmission, reflection and absorption coeffi-
cients; points denote UDEC results

Example 4.14 Verification of dynamic slip – four complete simulations

model new
;file: dynslip.dat
model title ’Dynamic Crack Slip’
block tolerance corner-round-length 0.1
block create polygon -200 -200 -200 200 -120 200 -120 -200
block cut crack -210,0 201 0
block zone gen edge 60
block mech damp rayleigh 0.005 1 stiff
;
fish def setup

mat_shear = 10000.0
mat_dens = 0.00265
freq = 1.0
tload = 10.0
w = 2.0 * math.pi * freq

end
fish def fsin

if block.mech.time.total <= tload then
fsin = math.sin(w*block.mech.time.total)

else
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fsin = 0.0
endif

end
fish def common

command
hist reset
block gridpoint reset disp vel
block mechanical time 0
block zone reset stress
block contact reset stress
block edge apply free-x free-y
block edge property bulk=16667 shear=@mat_shear density=@mat_dens
block gridpoint apply visc-x range pos-y -201,-199
block gridpoint apply visc-y range pos-y -201,-199
block gridpoint apply visc-x range pos-y 199, 201
block gridpoint apply visc-y range pos-y 199, 201
block edge apply stress 0,2,0 hist @fsin range pos-y -201,-199
block gridpoint apply vel-y = 0 range pos-x -201,-199
block gridpoint apply vel-y = 0 range pos-x -121,-119
block zone hist stress-xy -160,-200
block zone hist stress-xy -160,200
block gridpoint hist vel-x (-160,-200)
block gridpoint hist vel-x (-160,200)
block gridpoint hist dis-x (-160,-200)
block gridpoint hist dis-x (-160,200)
block mechanical hist time-total
block insitu stress 0 0 -1e-6
block step time 5.0

endcommand
end
;
fish def energy
;- compute energy coefficients for slipping-joint example -
;;
;; table 1 - x-velocity at point A for elastic joint case
;; table 2 - x-velocity at point A for slipping joint case
;; table 3 - x-velocity at point B for slipping joint case
;; table 4 - model mechanical time
;; Ei - energy flux for incident wave
;; Et - energy flux for transmitted wave
;; Er - energy flux for reflected wave
;; AAA - a measure of energy absorbed at the interface
;; items - no. of items in tables
;;

Cs = math.sqrt(mat_shear / mat_dens)
factor = mat_dens * Cs
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Ei = 0.0
Et = 0.0
Er = 0.0
t_n_1 = 0.0
nac = 0
AAA = 0.0
TTT = 0.0
RRR = 0.0
loop i (1,items)

t_n = table.y(4,i+1)
d_t = t_n - t_n_1
t_n_1 = t_n
Vsa_e = table.y(1,i+1)

; NOTE:
; i+1 accounts for zero inserted at
; the beginning of the first history

Vsa_s = table.y(2,i+1)
Vsb_s = table.y(3,i+1)
Ei = Ei + factor * Vsa_e * Vsa_e * d_t
Et = Et + factor * Vsb_s * Vsb_s * d_t
Er = Er + factor * (Vsa_s-Vsa_e) * (Vsa_s-Vsa_e) * d_t
if i > i_mean

nac = nac + 1
RRR = RRR + math.sqrt(Er/Ei)
TTT = TTT + math.sqrt(Et/Ei)

endif
end_loop
RRR = RRR / float(nac)
TTT = TTT / float(nac)
AAA = AAA + math.sqrt(1.0-RRR*RRR-TTT*TTT)
command

log on
end_command
ii = io.out(’ R = ’+string(RRR))
ii = io.out(’ T = ’+string(TTT))
ii = io.out(’ A = ’+string(AAA))
command

log off
end_command

end
@setup

;hist export 3 table 1 ; model save elas incident wave
;
block zone group ’block’
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block zone cmodel assign elastic density @mat_dens bulk 16667 ...
shear @mat_shear range group ’block’

;
block contact group ’joint’
block contact cmodel assign area stiffness-shear 10000 ...

stiffness-normal 10000 cohesion=2.5 tens=1e6 ...
range group ’joint’

; new contact default
block contact cmodel default area stiffness-shear=10000 ...

stiffness-normal=10000 cohesion=0 tens=1e6
;
fish set @items 460
fish set @i_mean=360
@common
hist export 3 table 1 ; model save elas incident wave
model save ’dinte.sav’

block contact cmodel assign area stiffness-shear 10000 ...
stiffness-normal 10000 cohesion=0.5 tens=1e6 ...
range group ’joint’

@common
hist export 3 table 2
hist export 4 table 3
hist export 7 table 4
@energy
model save ’dintp5.sav’

;
block contact cmodel assign area stiffness-shear 10000 ...

stiffness-normal 10000 cohesion=0.1 tens=1e6 ...
range group ’joint’

@common
hist export 3 table 2
hist export 4 table 3
hist export 7 table 4
@energy
model save ’dintp1.sav’

;
block contact cmodel assign area stiffness-shear 10000 ...

stiffness-normal 10000 cohesion=0.02 tens=1e6 range group ’joint’
@common
hist export 3 table 2
hist export 4 table 3
hist export 7 table 4
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@energy
model save ’dintp02.sav’

ret
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4.5.3 Line Source in an Infinite Elastic Medium with a Single Discontinuity

This verification problem consists of an infinite elastic medium containing a single planar discon-
tinuity, and subject to a line source of compression parallel to the discontinuity. The closed-form
solution was derived by Day (1985) as a special symmetric condition for the general problem of slip
of an interface due to a dynamic point source (Salvado and Minster 1980). The solution assumes
that the discontinuity has a viscous behavior in shear, and is rigid in the normal direction.

The problem geometry, shown in Figure 4.45, is defined by a planar crack of infinite lateral extent
and infinitesimal thickness, ε, in an elastic medium, and a dynamic load at some distance, y = h,
from the discontinuity. The y-axis is a line of symmetry.

h P

Explosive
Line Source

Crack
Plane

ε

Y

X

x

Figure 4.45 Problem geometry for an explosive source near a slip-prone dis-
continuity

The closed-form solution for crack slip as a function of time, as derived by Day (1985) is given by

δu(x, t) = 2 mo β2

π ρ α2
Re

[
p ηα ηβ

R(p)

] (
τ + 2r

α

)−1/2

τ−1/2 H(τ) (4.38)

where

R(p) = (1 − 2 β2 p2)
2 + 4 β4 ηα ηβ p2 + 2 β ηβ γ

p = 1

r2

[ (
τ + r

α

)
x + i

(
τ + 2r

α

)1/2

τ 1/2 h

]
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and r = (x2 + h2)1/2, distance from the point source to the point on the crack where the
slip is monitored;

H(τ) = step function;
τ = t − (r/α)

mo = source strength;
α = velocity of pressure wave;
β = velocity of shear wave;
ρ = density;

ηα = (α−2 − p2)1/2, Re ηα ≥ 0;
ηβ = (β−2 − p2)1/2, Re ηβ ≥ 0;
γ = dimensionless bonding parameter,

The slip response of the discontinuity for any source history S(t) can be obtained by convolution
of Eq. (4.38) and the source function S(t). Figure 4.46 shows the dimensionless analytical results
of slip history at a point P for a smooth step function

S(t) =
{

0.5 (1 − cos(πt/0.6)) t < 0.6
1.0 t ≥ 0.6

(4.39)

and for the values of the variables α, x and γ :

α2 = 3 β2

x = h

γ = 0

.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

(*10** 0)

1.0

2.0

3.0

4.0

5.0

(*10**-1)

Dimensionless Time

D
im

en
si

on
le

ss
 S

lip

UDEC Version 7.0



4 - 74 Special Features – Structures/Fluid Flow/Thermal/Dynamics

Figure 4.46 Dimensionless analytical results for slip history at point P (Day
1985) (dimensionless slip = (4h ρ β2/mo) δu; dimensionless time
= tβ/h)

Figure 4.47 shows the problem geometry modeled by UDEC. The source is located at the origin of
the coordinate axes and the discontinuity is located at y = −h. The y-axis is a line of symmetry,
and quiet boundaries are used on the other three sides of the model. The dynamic input is applied
at the semicircular boundary of radius 0.05 h. The slip movement is monitored at point P on the
discontinuity.

The continuous medium is modeled with seven elastic deformable blocks, as shown in Figure 4.48.
All joints except the discontinuity at y = −h are construction joints, in order to produce a continuous
elastic medium. The discontinuity is assigned zero shear strength, high normal stiffness and high
tensile strength in order to meet the assumptions given in the analytical solution.

2h

h

h

4h

h

P

x

y

Dynamic Input

Discontinuity

Non-Reflecting
Boundary

Figure 4.47 Problem geometry and boundary conditions for the UDEC anal-
ysis
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Figure 4.48 UDEC model showing semicircular source and joints

The following properties are assigned to the UDEC model.

Block Properties

Units

Geometric Scale: h = 10 (m)

Material Properties: mass density (ρ) = 1 (kg / m3)
shear modulus (G) = 100 (Pa)
bulk modulus (K) = 166.67 (Pa)
Poisson’s ratio (ν) = 0.25
p-wave velocity (α) = 17.32 (m / sec)
s-wave velocity (β) = 10.00 (m / sec)

Joint Properties

The following joint constitutive models are used:

(i) Coulomb slip model; and

(ii) Continuously yielding model.
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The specific UDEC parameters used for each joint model are as follows.

(i) Coulomb slip model (block contact cmodel assign area)
Units

st-n = 10,000 (Pa/m)
st-s = 0.1 (Pa/m)
fric = 0

(ii) Continuously yielding model (block contact cmodel assign c-y)
Units

st-n = 10,000 (Pa/m)
st-s = 0.1 (Pa/m)
fric = 1.0 × 10−5 (degrees)
exp-n = 0
exp-s = 0

fric-init = 1.0 × 10−10 (degrees)

rough = 1.0 × 10−4 (m)

Radial velocities corresponding to the dynamic solution for a line source in an infinite medium are
applied at the semicircular boundary. The velocities are calculated in the following manner.

The solution for the displacement due to a center of dilation in an infinite medium (Achenbach
1975) is described by the expression

ui = 1

4π Cp
2

∂

∂xi

[
1

r
f

(
t − r

Cp

) ]
(4.40)

where r2 = x2 + y2 + z2;

Cp = p-wave velocity; and

f(t) = source time history.

Integration of Eq. (4.40) along the z-axis leads to the solution for a line source of compression
(Lemos 1987) when f(t) is taken as a step function,

f (t) =
{

0, t < 0
1, t ≥ 0

(4.41)
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The two-dimensional solution for radial displacement becomes

u = − 1

2π Cp

t

r2

[
t2 Cp

2

r2
− 1

]−1/2

, t >
r

Cp

(4.42)

where r2 = x2 + y2.

The corresponding velocity is

v = − 1

2π Cp

1

r2

[
t2 Cp

2

r2
− 1

]−3/2

, t >
r

Cp

(4.43)

The actual input velocity record at r = 0.05 h, as shown in normalized form in Figure 4.49, is
obtained by convoluting Eqs. (4.43) and (4.39).
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Figure 4.49 Input radial velocity time history prescribed at r = 0.05 h (dimen-
sionless velocity = (h2 ρ β/mo) v; dimensionless time = t β/h)

Example 4.15 contains the UDEC data file for this problem. The velocity input is calculated in the
FISH function vel inp (see Example 4.16); the velocity is input as a history multiplier from table
number 1. The analytical solution is calculated and stored in table number 4, using FISH function
ana slp (see Example 4.17). The UDEC results are stored in table number 8 for comparison to
the analytical solution.
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The results for dynamic slip are compared in dimensionless form in Figure 4.50 for the Coulomb
slip model, and Figure 4.51 for the continuously yielding joint model. The difference at peak
slip between numerical and analytical results is 3% for the Coulomb model. The results for the
continuously yielding model are virtually identical. The analyses for both joint models are for a
UDEC mesh of maximum zone length equal to 0.033 h. The slip response on the discontinuity
involves higher frequency components because of zero friction along the crack. This requires a
very fine mesh for accurate representation, as discussed in Section 4.3.2. A spectral analysis of the
slip response at P suggests that at least 35 zones within the distance of the dominant wavelength
of the input wave are required to provide good accuracy.

Both figures show a disturbance in the UDEC results at a dimensionless time of approximately 2.5.
This indicates the effectiveness of the quiet boundaries. These boundaries cannot be fully effective
in a problem involving dynamic slip in a discontinuity that actually crosses the boundary. However,
the results are still considerably better than those obtained without nonreflecting boundaries. If the
boundaries are placed farther away from the source, then improved performance may be expected.
In a practical problem, material damping would reduce the importance of these partial boundary
reflections.

Figure 4.50 Comparison of analytical results (history 4) and numerical results
(history 8) for dynamic slip at point P, using the Coulomb joint
model

UDEC Version 7.0



DYNAMIC ANALYSIS 4 - 79

Figure 4.51 Comparison of analytical results (history 4) and numerical results
(history 8) for dynamic slip at point P, using the continuously
yielding model

Example 4.15 Line source in an infinite elastic medium with a discontinuity

model new
;file: linesource.dat
model title ’Dynamic Line Source’
;-----------------------------------------------------------------
; create block geometry with maximum zone length of 0.033h
; Coulomb block contact cmodel assign
block tolerance corner-round-length 0.002
block create polygon 0,-20 0,-.5 0.1913,-0.4619 0.3536,-0.3536 ...

0.4619,-0.1913 0.5,0 0.4169,0.1913 0.3536,0.3536 0.1913,0.4619 ...
0,0.5 0,20 40,20 40,-20

;
; construction joints
block cut crack -5,10 45,10 join
block cut crack 20,-21 20,21 join
block cut crack -1,-6 6,1 join
block cut crack -1,6 6,-1 join
;
; discontinuity
block cut crack -5,-10 45,-10
;
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; create finite difference zones
gen edge 0.33 range pos-x 0,40 pos-y -20,20
model save ’line1.sav’
model restore ’line1.sav’
;
block zone group ’elastic block’
block zone cmodel assign elastic density 1 bulk 166.67 shear 100 ...

range group ’elastic block’
;
block contact group ’joint’
block contact cmodel assign area stiffness-normal 1E4 ...

stiffness-shear 0.1 tension 1E6 range group ’joint’
; new contact default
block contact cmodel default area stiffness-normal=1E4 ...

stiffness-shear=0.1 tension=1E6
;
block gridpoint apply bulk=166.67 shear=100.0 density=1.0
block gridpoint apply visc-x range pos-x -1,41 pos-y -20.1,-19.9
block gridpoint apply visc-x range pos-x -1,41 pos-y 19.9,20.1
block gridpoint apply visc-x range pos-x 39.9,40.1 pos-y -21,21
block gridpoint apply visc-y range pos-x -1,41 pos-y -20.1,-19.9
block gridpoint apply visc-y range pos-x -1,41 pos-y 19.9,20.1
block gridpoint apply visc-y range pos-x 39.9,40.1 pos-y -21,21
call ’VEL_INP.FIS’
; set velocity boundary conditions along the semi-circular boundary,
; applying the history as TABLE 1 from VEL_INP.FIS
bl gr ap v-x=0 v-y=-1.0 hi tab 1 ra p-x -0.05 0.05 p-y -0.55 -0.45
bl gr ap v-x=0.383 v-y=-0.924 hi tab 1 ra p-x 0.17 0.21 p-y -0.48 -0.45
bl gr ap v-x=0.707 v-y=-0.707 hi tab 1 ra p-x 0.33 0.37 p-y -0.37 -0.33
bl gr ap v-x=0.924 v-y=-0.383 hi tab 1 ra p-x 0.43 0.47 p-y -0.21 -0.17
bl gr ap v-x=1.0 v-y= 0.0 hi tab 1 ra p-x 0.48 0.52 p-y -0.05 0.05
bl gr ap v-x=0.924 v-y= 0.383 hi tab 1 ra p-x 0.41 0.45 p-y 0.17 0.21
bl gr ap v-x=0.707 v-y= 0.707 hi tab 1 ra p-x 0.33 0.37 p-y 0.33 0.37
bl gr ap v-x=0.383 v-y= 0.924 hi tab 1 ra p-x 0.17 0.21 p-y 0.43 0.47
bl gr ap v-x=0 v-y= 1.0 hi tab 1 ra p-x -0.05 0.05 p-y 0.45 0.55
; set symmetry boundary conditions along the remaining side
bl grid apply vel-x=0 range pos-x -0.1,0.1 pos-y -21,21
block insitu stress -1.0e-9,0,-1.0e-9
; set histories
; contact address at coordinate 10,-10
hist interval = 10
block gridpoint history vel-y (0,.5)
block gridpoint history vel-x (.5,0)
block gridpoint history vel-x (.35,0)
block gridpoint history vel-y (.35,.35)
block gridpoint history vel-x (.19,-.46)
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block gridpoint history vel-y (.19,-.46)
block contact history displacement-shear 10,-10
;
block mech damp rayleigh 0,0
model save ’line2.sav’
;
block cycle 8000
model save ’line3.sav’
;
; calculate analytical solution for dynamic slip
call ’ana_slp.fis’
;
; calculate dimensionless numerical solution
hist EXPORT 7 table 7
fish def num_slp

h_step = 800
h_n = 10.0
rho_n = 1.0
vs_n = 10.0
m0_n = 1.0
loop n (1,h_step)

table.y(8,n) = (4.0*h_n*rho_n*vs_n*vs_n/m0_n)*table.y(7,n)
table.x(8,n) = (vs_n / h_n) * table.x(7,n) * block.mechanical.timestep

endloop
end
@num_slp
model save ’line4.sav’
;
model new
;
;-----------------------------------------------------------------
; create block geometry with maximum zone length of 0.033h
; Continuously yielding block contact cmodel assign
model restore ’line1.sav’

;
block zone group ’elastic block’
block zone cmodel assign elastic density 1 bulk 166.67 shear 100 ...

range group ’elastic block’
;
block contact group ’cy discontinuity’
block contact cmodel assign cy friction 1E-5 friction-initial 1E-10 ...
roughness 0.0001 stiffness-shear 0.1 stiffness-normal 1E4 ...
range group ’cy discontinuity’

; new contact default
block contact cmodel default cy friction=1E-5 friction-initial=1E-10 ...
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roughness=0.0001 stiffness-shear=0.1 stiffness-normal=1E4
;
block gridpoint apply bulk=166.67 shear=100.0 density=1.0
block grid apply visc-x range pos-x -1,41 pos-y -20.1,-19.9
block grid apply visc-x range pos-x -1,41 pos-y 19.9,20.1
block grid apply visc-x range pos-x 39.9,40.1 pos-y -21,21
block grid apply visc-y range pos-x -1,41 pos-y -20.1,-19.9
block grid apply visc-y range pos-x -1,41 pos-y 19.9,20.1
block grid apply visc-y range pos-x 39.9,40.1 pos-y -21,21
call ’VEL_INP.FIS’
; set velocity boundary conditions along the semi-circular boundary,
; applying the history as TABLE 1 from VEL_INP.FIS
bl gr ap v-x=0 v-y=-1.0 hi tab 1 ra p-x -0.05 0.05 p-y -0.55 -0.45
bl gr ap v-x=0.383 v-y=-0.924 hi tab 1 ra p-x 0.17 0.21 p-y -0.48 -0.45
bl gr ap v-x=0.707 v-y=-0.707 hi tab 1 ra p-x 0.33 0.37 p-y -0.37 -0.33
bl gr ap v-x=0.924 v-y=-0.383 hi tab 1 ra p-x 0.43 0.47 p-y -0.21 -0.17
bl gr ap v-x=1.0 v-y= 0.0 hi tab 1 ra p-x 0.48 0.52 p-y -0.05 0.05
bl gr ap v-x=0.924 v-y= 0.383 hi tab 1 ra p-x 0.41 0.45 p-y 0.17 0.21
bl gr ap v-x=0.707 v-y= 0.707 hi tab 1 ra p-x 0.33 0.37 p-y 0.33 0.37
bl gr ap v-x=0.383 v-y= 0.924 hi tab 1 ra p-x 0.17 0.21 p-y 0.43 0.47
bl gr ap v-x=0 v-y= 1.0 hi tab 1 ra p-x -0.05 0.05 p-y 0.45 0.55
; set symmetry boundary conditions along the remaining side
block gridpoint apply vel-x=0 range pos-x -0.1,0.1 pos-y -21,21
block insitu stress -1.0e-9,0,-1.0e-9
; set histories
; contact address at coordinate 10,-10
hist interval =10
block gridpoint history vel-y (0,.5)
block gridpoint history vel-x (.5,0)
block gridpoint history vel-x (.35,0)
block gridpoint history vel-y (.35,.35)
block gridpoint history vel-x (.19,-.46)
block gridpoint history vel-y (.19,-.46)
block contact history displacement-shear 10,-10
;
block mechanical damp rayleigh 0,0
model save ’line2_cy.sav’

;
block cycle 8000
model save ’line3_cy.sav’
;
; calculate analytical solution for dynamic slip
call ’ana_slp.fis’
;
; calculate dimensionless numerical solution
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hist export 7 table 7
fish def num_slp

h_step = 800
h_n = 10.0
rho_n = 1.0
vs_n = 10.0
m0_n = 1.0
loop n (1,h_step)

table.y(8,n) = (4.0*h_n*rho_n*vs_n*vs_n/m0_n)*table.y(7,n)
table.x(8,n) = (vs_n / h_n) * table.x(7,n) * block.mechanical.timestep

endloop
end
@num_slp
model save ’line4_cy.sav’

ret
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Example 4.16 Listing of “VEL INP.FIS”: function to calculate velocity input

; -------------------------------------------------------------------------
; Fish function for generating the radial velocity input profile at r=0.05h
;
; Input:
; vl --- P-wave velocity
; per --- period of wave
; tt --- total time
; xd --- horizontal distance
; nt --- total number of dat points
;
; Output:
; velocity profile stored in table 1
; -------------------------------------------------------------------------
def ini_par

vl = 0.0
per = 0.0
tt = 0.0
xd = 0.0
nt = 1000
_vtab = 1 ; table storing velocity profile
_fptab = 2
_vhtab = 3
table.x(_vtab, nt) = 0.0
table.x(_fptab, nt) = 0.0
table.x(_vhtab, nt) = 0.0

end
@ini_par

def vel_inp
if xd <= 0.0

exit
endif
if per <= 0.0

exit
endif
_w = 2.0*math.pi/per
_dt = tt/float(nt)
_ca = -1./(2.0*math.pi*vl)
_cb = _ca/(xd * xd)
_cc = _cb * _dt

;
; Obtain velocity record by performing convolution
; using the radial displacement for a step function
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; and second derivative of the pressure history
;

loop _n (1, nt)
_t = float(_n-1) * _dt
table.x(_fptab, _n) = _t
if _t < 0.5*per

table.y(_fptab, _n) = 0.5*_w*_w*math.cos(_w*_t)
_nfp = _n

else
table.y(_fptab, _n) = 0.0

endif
end_loop

;
; --- displacement -----
;

_t0 = xd/vl
_j0 = int(_t0/_dt)
_j0 = _j0 + 1
loop _n (1, nt)

_t = float(_n-1) * _dt
if _n < _j0

table.y(_vhtab, _n) = 0.0
else

_t = _t0 + 0.5*_dt + float(_n-_j0)*_dt
_cf = _t*vl/xd
_cf2 = _cf * _cf
_cs = math.sqrt(_cf2 - 1.0)
_cg = _cs / _t
table.y(_vhtab, _n) = _cc / _cg

endif
table.x(_vhtab, _n) = _t

end_loop
;
; ---- velocity ---------
;

table.y(_vtab, 1) = 0.0
table.x(_vtab, 1) = 0.0
loop _n (2, nt)

_vn = 0.0
_j1 = math.min(_nfp, _n-1)
loop _n1 (1, _j1)

_vn = _vn + table.y(_fptab, _n1) * table.y(_vhtab, (_n - _n1))
end_loop
table.y(_vtab, _n) = _vn

end_loop
;
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; Change sign for pressures source
;

_vmax = -1e20
_vmin = 1e20
loop _n (1, nt)

table.y(_vtab, _n) = -1.0*table.y(_vtab, _n)
_vi = table.y(_vtab, _n)
vmin = math.min(_vmin, _vi)
vmax = math.max(_vmax, _vi)
table.x(_vtab, _n) = float(_n-1)*_dt

end_loop
; oo = out(’ vmin, vmax = ’, string(vmin), ’,’, string(vmax))
end
fish set @vl=17.32
fish set @per=1.2
fish set @tt=1.4
fish set @xd=0.5
fish set @nt=1000
@vel_inp
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Example 4.17 Listing of “ANA SLP.FIS”: function to calculate Day solution for dynamic
slip

; ========================================================================
; This function evaluates the dynamic response of the slip of a
; single discontinuity of infinite extent caused by an explosive
; loading. Analytical solution of a line source in an elastic medium
; with a discontinuity is given by S. M. Day (1985)
;
; Input: _nt --- total number of data points to be created
; _dt --- time increment
; _xd --- horizontal distance, x
; _hd --- vertical distance, _hd
; per --- period of input function
; rho --- density
; m0 --- source strength
; gamma --- ???
; _vp --- velocity of pressure wave
; _vs --- velocity of shear wave
;
; Output: Dimensionless relation, (4*_hd*rho*_vsˆ2/m0)du vs. t*_vs/_hd,
; stored in table 4. Non-normalized values are stored in table 6.
;
; ========================================================================
fish define add_complex
; Summation of two complex variables
; Input : Za, Zb
; Output: Z = Re(Z) + Im(Z)

Re_z = Re_a + Re_b
Im_z = Im_a + Im_b

end
;
fish define mult_complex
; multiplication of two complex variables
; Input : Za, Zb
; Output: Z = Re(Z) + Im(Z)

Re_z = Re_a*Re_b - Im_a*Im_b
Im_z = Re_a*Im_b + Im_a*Re_b

end
;
fish define divi_complex
; division of complex variables Za/Zb

_deno = Re_b * Re_b + Im_b * Im_b
if _deno = 0.0

divi_compex = 1
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exit
endif
Re_z = (Re_a*Re_b + Im_a*Im_b)/_deno
Im_z = (Im_a*Re_b - Re_a*Im_b)/_deno

end
;
fish define sqrt_complex
; squart root of a complex variable
; Input : Zx
; Output: Zr = Re(Zr) + Im(Zr)
; _theta = atan2(Im_x, Re_x) * 0.5

_arg = float(Im_x/Re_x)
_theta = math.atan(_arg) * 0.5
_sqrtr = math.sqrt(math.sqrt(Re_x*Re_x + Im_x*Im_x))
Re_zr = _sqrtr*math.cos(_theta)
Im_zr = _sqrtr*math.sin(_theta)

end
;
fish define ana_slp
;
; Input _nt, _dt, _xd, _hd, gamma, per, rho
;

_dt = float(_dt)
_xd = float(_xd)
_hd = float(_hd)
gamma = float(gamma)
per = float(per)
rho = float(rho)

_utab = 4 ; table for normal-displacement vs time
_ftab = 5
_uftab = 6

_vs2 = _vs*_vs
_vs4 = _vs2*_vs2
_2vs2 = 2.0 * _vs2
_4vs4 = 4.0 * _vs4
_r = math.sqrt(_xd*_xd + _hd*_hd)
_r2 = _r * _r
loop _n (1, _nt)

_t = float(_n) * _dt
_tau = _t - _r/_vp
if _tau > 0.0

_t2r2 = math.sqrt(_t*_t - (_r/_vp)*(_r/_vp))
Re_cp = _t*_xd / _r2
Im_cp = _t2r2*_hd / _r2

UDEC Version 7.0



DYNAMIC ANALYSIS 4 - 89

Re_a = Re_cp
Im_a = Im_cp
Re_b = Re_cp
Im_b = Im_cp
mult_complex ; Zˆ2 ---> Re(Z) + Im(Z)
Re_z2 = Re_z
Im_z2 = Im_z

Re_x = 1.0/(_vp*_vp) - Re_z2
Im_x = -1.0 * Im_z2
sqrt_complex ; sqrt(Zx)
Re_cetap = Re_zr
Im_cetap = Im_zr

Re_x = 1.0/(_vs*_vs) - Re_z2
Im_x = -1.0 * Im_z2
sqrt_complex ; sqrt(Zx)
Re_cetas = Re_zr
Im_cetas = Im_zr

Re_a = 1.0 - _2vs2 * Re_z2
Im_a = -1.0 * _2vs2 * Im_z2
Re_b = Re_a
Im_b = Im_a
mult_complex ; (1. - 2.*vsˆ2*cpˆ2) ˆ 2
Re_temp1 = Re_z
Im_temp1 = Im_z

Re_a = Re_cetap
Im_a = Im_cetap
Re_b = Re_cetas
Im_b = Im_cetas
mult_complex ; cetap * cetas
Re_a = Re_z
Im_a = Im_z
Re_b = Re_z2
Im_b = Im_z2
mult_complex ; cetap * cetas * cpˆ2
Re_temp2 = _4vs4 * Re_z
Im_temp2 = _4vs4 * Im_z

Re_cr = Re_temp1 + Re_temp2
Im_cr = Im_temp1 + Im_temp2
Re_cr = Re_cr + 2.0 * _vs * gamma * Re_cetas
Im_cr = Im_cr + 2.0 * _vs * gamma * Im_cetas
_dut = 2.0*m0*_vs*_vs/(math.pi*rho*_vp*_vp)
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; note Re_a, Im_a store (cetap*cetas)
Re_b = Re_cp
Im_b = Im_cp
mult_complex ; cetap * cetas * cp

Re_a = Re_z
Im_a = Im_z
Re_b = Re_cr
Im_b = Im_cr
if divi_complex = 1 ; cetap * cetas * cp / cr

oo = io.out(’ divided by zero’)
exit

endif
_dut = _dut * Re_z / _t2r2
table.y(_utab, _n) = _dut

else
table.y(_utab, _n) = 0.0

endif
end_loop

;
_nf = int(per/_dt + 0.0001)
_sum = 0.0
loop _n (1, _nf)

_ph = float(_n) * _dt / per
if _ph < 1.0

table.y(_ftab, _n) = math.sin(math.pi * _ph)
else

table.y(_ftab, _n) = 0.0
endif
_sum = _sum + table.y(_ftab, _n)

end_loop
;
; du vs. time relation
;

loop _i (1, _nt)
_uf = 0.0
_n = math.min(_nf, _i)
loop _j (1, _n)

_uf = _uf + table.y(_utab,_i-_j+1)*table.y(_ftab,_j)
end_loop
table.y(_uftab, _i) = _uf / _sum
table.x(_uftab, _i) = float(_i) * _dt

end_loop
;
; Dimensionless relation
;
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loop _n (1, _nt)
table.y(_utab, _n) = (4.0*_hd*rho*_vs*_vs/m0)*table.y(_uftab, _n)
table.x(_utab, _n) = float(_n) * _dt * _vs / _hd

end_loop
;
end
;
fish set @_nt=1000
fish set @_dt=0.005
fish set @_xd=1.0
fish set @_hd=1.0
fish set @_vs=1.0
fish set @_vp=1.7320508
fish set @gamma=0.0
fish set @per=0.6
fish set @rho=1.0
fish set @m0=1.0
@ana_slp
;
;
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4.6 Dynamic Wizard

4.6.1 Signal Preprocessing for Seismic Analysis

An example application of the Tools->Dynamic Input Wizard is presented here. The seismic
loading is from the 1987 Loma Prieta earthquake in California. The input record (i.e., the upward-
propagating motion from the deconvolution analysis; SHAKE-91 is used in this example to estimate
the appropriate motion at depth corresponding to the target (surface) motion) is in the file named
“ACC DECONV.HIS”, and is shown in Figure 4.52. The estimated peak acceleration is approxi-
mately 5.8 ft/sec2.

Figure 4.52 Horizontal acceleration time history at elevation of 400 ft
(upward-propagating motion from deconvolution analysis)

Step 1: Import the Data File into the Wizard

To import the upward-propagating motion from the deconvolution analysis, press the “file open”
button, select the file named “ACC DECONV.HIS” and then press the Select button as shown in
Figure 4.53. Choose “history” as the file format, select “ Acceleration” as the ground motion type
and choose the imperial unit (ft/s2), then press the Next button for filtering.
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Figure 4.53 Import input into the wizard

Step 2: Filtering

The acceleration input record is integrated to produce a velocity record, which is then integrated
again to get a displacement record. Those records are shown on the left section of the window.

A fast Fourier transform (FFT) analysis of the input acceleration record results in an amplitude
spectrum as shown in Figure 4.54.
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Figure 4.54 Original input records, amplitude spectrum and filter

This figure indicates that the dominant frequency is approximately 1 Hz, the highest frequency
component is less than 10 Hz, and the majority of the frequencies are less than 5 Hz. Most energy
of the input is contained in lower frequency components. A Butterworth-type low-pass filter with
a cutoff frequency of 5 Hz is applied to remove the frequency components above 5 Hz. The input
records are updated after the circular green “start” button is pressed as shown in Figure 4.55.
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Figure 4.55 Filtered input records, amplitude spectrum

Step 3: Baseline correction

The baseline correction window will appear by hitting the Next button as shown in Figure 4.56.
Four tabbed panes are provided to perform baseline correction. First press the Mean tab to remove
the mean acceleration. This may not be necessary if the ground motion has been corrected. Next,
remove the displacement drift via a low-frequency sinusoid function. The final displacement drift
is found to be approximately 0.3 ft as shown in Figure 4.56. By pressing the green circular “start”
button, the drift is removed and the final displacement is corrected to zero, as shown in Figure 4.57.
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Figure 4.56 Waveform before baseline correction

Figure 4.57 Waveform after baseline correction
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Step 4: Export data for dynamic analysis

The processed data can be saved by pressing the “save” button. Name the file “INPUT.TAB”, press
the Select button, choose “Velocity” as motion type and then press the Export button to export the
data as shown in Figure 4.58.

Figure 4.58 Save processed velocity in a table
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The corrected velocity table can be read into UDEC for dynamic analysis as shown in Figure 4.59

Figure 4.59 Processed velocity record
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