
WRITING NEW CONSTITUTIVE MODELS 4 - 1

4 WRITING NEW CONSTITUTIVE MODELS

4.1 Zones

Users may create their own constitutive model for use in UDEC. This is an optional feature in
UDEC. The model must be written in C++ and compiled as a DLL (dynamic link library) file. It
can be loaded whenever it is needed. The main function of the model is to return new stresses,
given strain increments. However, the model must also provide other information (such as name of
the model and material property names) and describe certain details about how the model interacts
with the code.

In the C++ language, the emphasis is on an object-oriented approach to program structure, using
classes to represent objects. The data associated with an object are encapsulated by the object, and
are invisible outside of the object. Communication with the object is by member functions that
operate on the encapsulated data. In addition, there is strong support for a hierarchy of objects: new
object types may be derived from a base object, and the base-object’s member functions may be
superseded by similar functions provided by the derived objects. This arrangement confers a distinct
benefit in terms of program modularity. For example, the main program may need access to many
different varieties of derived objects in many different parts of the code, but it is only necessary to
make reference to base objects, not to the derived objects. The runtime system automatically calls
the member functions of the appropriate derived objects. It is assumed that the reader has a working
knowledge of the C++ programming language. (A good introduction is provided by Stevens 1994.)

The methodology of writing a constitutive model in C++ for operation in UDEC is described
in Section 4.1.1. This includes descriptions of the base class, member functions, registration
of models, information passed between the model and UDEC, and the model state indicators.
The implementation of a DLL model is described and illustrated in Section 4.1.2. This includes
descriptions of the support functions used by the model, the source code for an example model,
FISH support for user-written models, and the mechanism for creating and loading a DLL. All of
the files referenced in this section are contained in the “\UDEC700\pluginfiles\cmodels” folder.

Note that a DLL must be compiled using Microsoft Visual Studio 2017 for operation in UDEC.

To get started quickly and provide a project for examination, take the following steps.

1. Install UDEC and run it. The first time you run it, application data will be copied to
Documents\Itasca\udec700 (by default).

2. Go to this folder and navigate to pluginfiles\cmodels\example.

3. Copy the examples folder and rename it.

4. Rename Example2017.sln, Example2017.vxproj, modelexample.h and
modelexample.cpp to include the name of your new model in place of example2017 and
example.

5. Open the solution in Visual Studio 2017.

UDEC Version 7.0



4 - 2 Constitutive Models

6. Visual Studio will tell you that it cannot load the project. Click OK and then right click
on the Example project in the Solution Explorer and choose Remove.

7. Right click on the solution and select Add -> Existing Project. Choose your renamed
project from step 4.

8. In the new project, remove Example.h and Example.cpp.

9. Add the renamed .h and .cpp files from step 4.

10. At the top of the .cpp file, change the name of the .h file to be included.

11. In the .h and .cpp file, do a search and replace to rename the class from ModelExample
to your model class.

12. Change the Solution Configuration to Release and the Solution Platform to x64

13. In the .cpp file, change the return values from extern "C" EXPORT TAG const char
*getName() to the name of your model. Note that the name has to be of the form
modelxxxx where xxxx is the name of the constitutive model.

14. Change the return value in the getName() function to be just the name of the model.

15. Change the return value for the getFullName function.

16. Go to ProjectâŁ“>Properties. Click on Configuration PropertiesâŁ“>General. Ensure
that the Configuration is set to Release and the platform is set to x64. Change the target
name to modelxxxx006 64 where xxxx is the name of your model.

17. Build the project. The dll should appear in the x64\release folder.

18. Make modifications to the model and rebuild.

19. Put the dll in the folder C:i\Program Files\Itasca\udec700\exe64\plugins\cmodel
where UDEC is installed.

20. Start UDEC and use the command zone model xxxx to change the zone constitutive
model.

UDEC Version 7.0



WRITING NEW CONSTITUTIVE MODELS 4 - 3

4.1.1 Methodology

4.1.1.1 Base Class for Constitutive Models

The methodology described above is exploited in UDEC ’s support for user-written constitutive
models. A base class provides a framework for actual constitutive models, which are classes
derived from the base class. The base class, calledConstitutiveModel, is termed an “abstract”
class because it declares a number of “pure virtual” member functions (signified by the =0 syntax
appended to the function prototypes). This means that no object of this base class can be created,
and that any derived-class object must supply real member functions to replace each one of the pure
virtual functions of ConstitutiveModel.

4.1.1.2 Member Functions

Any derived constitutive-model class must provide actual functions to replace the virtual member-
functions in ConstitutiveModel.

The model class definition should also contain a constructor that must invoke the base constructor.
In all cases, the derived-class constructor should be called with no parameters, as in the clone
member function. Initialization of data members may be performed by the constructor, as illustrated
in Example 4.1. In this example, the symbols bulk , shear , etc. are the data members for the
derived model.

Example 4.1 Typical model constructor

ModelExample::ModelExample()
bulk_(0.0), shear_(0.0), cohesion_(0.0),
friction_(0.0), dilation_(0.0), tension_(0.0),e1_(0.0),
e2_(0.0), g2_(0.0), nph_(0.0), csn_(0.0), sc1_(0.0),
sc2_(0.0), sc3_(0.0), bisc_(0.0), e21_(0.0), rnps_(0.0)

4.1.1.3 Registration of Models

Each user-written constitutive model is compiled into a DLL that must be instantiated in the UDEC
process. By convention, there are four exported functions in a DLL used as a plug-in to UDEC:
getName(), getMajorVersion(), getMinorVersion() and createInstance().
You must also provide a stub function called DllMain(), which is called when the library is
loaded and unloaded from the system. For example, here is how these functions appear for the
Hoek-Brown model:

int stdcall DllMain(void *,unsigned, void *)
{

return 1;
}
extern "C" EXPORT TAG const char *getName()

UDEC Version 7.0



4 - 4 Constitutive Models

{
return "modelhoekbrown";

}
extern "C" EXPORT TAG unsigned getMajorVersion()
{

return MAJOR VERSION;;
}
extern "C" EXPORT TAG unsigned getMinorVersion()
{

return MINOR VERSION;
}
extern "C" EXPORT TAG void *createInstance()
{

models::ModelHoek *m = new models::ModelHoek();
return (void *)m;

}
The EXPORT TAG macro indicates that these functions should be exported from the DLL.

The DllMain() function is always the same.

The exported DLL function getName() should always return a string that begins with the word
“model.” This indicates that the DLL is a constitutive model plug-in. In the above example, the string
“modelhoekbrown” is returned by the exported DLL function getName(). The getName()
method of the ConstitutiveModel class returns the string “hoekbrown” (without “model”
prefixed to the name as in the getName() function that is exported. This convention of prefixing
the exported name with “model” should be followed. TheConstitutiveModel’sgetName()
function must return a unique string (this is the method used to distinguish constitutive models from
each other).

The getMajorVersion() function should not be altered. The major version is determined by
the base constitutive model DLL, and indicates binary compatibility. By convention, this number
will also be indicated in the file name of the DLL you produce.

The getMinorVersion() function indicates the minor version update of your constitutive
model. For example, if new properties are added to a constitutive model, it might not be save
file-compatible with an older version. In this case, the minor version number (defined in file
“version.txt”) would be incremented by 1.

The createInstance() function actually creates and returns an instance of your class. This
is stored in a registry and used (via the clone() function) to create all other instances.

UDEC Version 7.0



WRITING NEW CONSTITUTIVE MODELS 4 - 5

4.1.1.4 Information Passed between Model and UDEC during Cycling

The most important link between UDEC and a user-written model is the member-function
run(unsigned nDim, State *ps), which computes the mechanical response of the model
during cycling. A structure, State (defined in “state.h”), is used to transfer information to and
from the model.

The main task of member-function run() is to compute new stresses from strain increments. In
a nonlinear model, it is also useful to communicate the internal state of the model, so that the state
may be plotted and printed. For example, the supplied models indicate whether they are currently
yielding or have yielded in the past. Each zone may set the variable state , which records the
state of a model as a series of bits that can be on or off (1 or 0). Each bit can be associated with a
message that is displayed on the screen. The string returned by member function States contains
sub-strings corresponding to bit positions that the model may set in state . The first sub-string
refers to bit 0, the second to bit 1, and so on. Several bits may be set simultaneously. For example,
both shear and tensile yield may occur together. The bit assignment is described in Section 4.1.1.5.
The operation of the state logic may be appreciated by consulting any of the nonlinear model files
(e.g., “modelexample.cpp”).

4.1.1.5 State Indicators of Zones

Each zone has a member variable that maintains its current state indicator. The member variable
has 32 bits that can be used to represent a maximum of 16 distinct states. The state indicator bits are
used by built-in constitutive models to denote plastic failure of triangles in a zone. See Table 4.1
for bit assignment and the corresponding failure state for built-in constitutive models.

UDEC Version 7.0



4 - 6 Constitutive Models

Table 4.1 Failure states and bit assignments

Hex Decimal Binary

mShearNow = 0x0001 1 0000 0000 0000 0001
mTensionNow = 0x0002 2 0000 0000 0000 0010
mShearPast = 0x0004 4 0000 0000 0000 0100
mTensionPast = 0x0008 8 0000 0000 0000 1000
mJointShearNow = 0x0010 16 0000 0000 0001 0000
mJointTensionNow = 0x0020 32 0000 0000 0010 0000
mJointShearPast = 0x0040 64 0000 0000 0100 0000
mJointTensionPast = 0x0080 128 0000 0000 1000 0000
mVolumeNow = 0x0100 256 0000 0001 0000 0000
mVolumePast = 0x0200 512 0000 0010 0000 0000
unused = 0x0400 1024 0000 0100 0000 0000
unused = 0x0800 2048 0000 1000 0000 0000
unused = 0x1000 4096 0001 0000 0000 0000
unused = 0x2000 8192 0010 0000 0000 0000
unused = 0x4000 16384 0100 0000 0000 0000
unused = 0x8000 32768 1000 0000 0000 0000

For user-defined constitutive models, the user can create a named state and assign any particular
bit for that state, and subsequently update the triangular state indicator variable. The named states
in Table 4.1 are used by built-in constitutive models to update the failure states of triangular zones,
and show one particular use of the state indicator variable. If a user uses the state indicator variable
to indicate failure states in their own model, they should make sure that there is no conflict with
failure state constants of built-in models if they plan to use both of them in an analysis.

The named states in Table 4.1 are used by built-in models to update the triangular zone state
indicator:

1. Drucker-Prager

2. Mohr-Coulomb

3. Strain-Hardening/Softening

4. Ubiquitous-Joint

5. Softening-Ubiquitous-Joint

6. Double-Yield

7. Modified-Cam-Clay

UDEC Version 7.0



WRITING NEW CONSTITUTIVE MODELS 4 - 7

8. Cap-yield

9. Cap-yield-simplified

10. Hoek-Brown

11. Hoek-Brown-PAC

12. WIPP-drucker

13. Power-Mohr

14. Burger-Mohr

UDEC calls the constitutive model function run() for each zone, to update its stress values.
Typically, the state indicator is also updated in this process by the constitutive model. For built-in
models, the state indicator denotes the failure state of the triangle. This is updated by the constitutive
model using the logical “or” (|) operation with the zone state indicator variable and the current failure
state calculated by the constitutive model. The user should be certain to appropriately set or un-set
all previous states updated prior to the current state calculated by the constitutive model. The state
of a triangle can then be checked using the logical “and” (&) operator with the state variable and
desired user-defined state.

Suppose a triangle is undergoing failure in tension and shear. This failure state is stored in the state
indicator of the triangle. The built-in constitutive model updates the state variable:

(a.) Initially, check the current state and set/un-set state indicator
appropriately. For example,
if (Tet State & mShearNow) {

Tet State & = ˜mShearNow; /* unset previous state */
Tet State | = mShearPast; /* set previous state to new state */

}
if (Tet State & mTensionNow) {

Tet State & = ˜mTensionNow; /* unset previous state */
Tet State | = mTensionPast; /* set previous state to new state */

}
(b.) Calculate the current state of the triangle.
(c.) Update the state if necessary. For example,

Tet State |= mShearNow;
Tet State |= mTensionNow;

The result of the preceding operations is that the first and second bits are set for that particular
zone. Additionally, during initialization (step a), the third and the fourth bits are also set. The
FISH function z state(zi) (see Section 2.5.3 in the FISH volume) returns a value of 15, the decimal
equivalent of the first four bits being set.

Users can use the FISH logical and to find out the failure state at any point in the analysis. Users
can also split the output into additive powers of two, and find out all distinct failure states. For

UDEC Version 7.0



4 - 8 Constitutive Models

example, if z state returns 15, then 15 can be written as 15 = 1 + 2 + 4 + 8 (additive powers of
two), and from Table 4.1, the zone is in shear and tensile failure, and had shear and tensile failure
in the past.

4.1.2 Implementation

4.1.2.1 Utility Structures

A few structures/classes are provided to help in writing and communicating with constitutive models.
Some are provided by “base005.dll”, which defines the base level of functionality common to all
plug-in interfaces. Others are provided by “conmodel005.dll”, which defines the specific interface
used by the constitutive model system. In all cases, full documentation of the class definition is
available in the base interface module of the programmer’s interface documentation (in the on-screen
Help menu).

“base006.dll” provides:

Int, UInt, Byte, UByte, Double, Float, etc. – defined in base/src/basedef.h.
These types are substitutions for the standard C++ types int, unsigned, char, double, etc.
These types are used instead to define consistent size definitions. For instance, anInt is guaranteed
to be a signed 32-bit quantity regardless of the platform.

String – defined in base/src/string.h.
This class is derived from std::basic string<wchar.t>, or the ANSI C++ standard string
class for unicode. The String class adds a few handy utility functions, such as string, to numeric
conversion.

DVect3 – defined in base/src/vect.h.
This class is actually the double instance of the template class Vector3<T>. Similar predefined
types are IVect (Vector3<Int>) and UVect (Vector3<UInt>). This class allows one
to treat a three-dimensional vector as a primitive type, with full operator overloading for convenient
syntax.

Variant – defined in base/src/variant.h.
This defines a type that can represent many different primitive types (e.g., String, Double, Int,
etc.). This class is used to pass properties to and from the constitutive model.

Axes – defined in base/src/axes.h.
This class allows for the definition of an orthonormal basis. This basis can be used to convert
coordinates to and from a “global” basis represented by the traditional Cartesian axes.

SymTensor – defined in base/src/symtensor.h.
This class defines a 3 × 3 symmetric tensor, typically used to represent stresses and strains. Mem-
ber access is available through the s11(), s12(), s13(), s22(), etc. functions. Member
modification is available through the rs11(), rs12(), etc. functions. In addition, eigenvector
information (or principal directions and values) can be obtained through the getEigenInfo()

UDEC Version 7.0



WRITING NEW CONSTITUTIVE MODELS 4 - 9

function. The helper class SymTensorInfo is used to allow the user to modify principal values
while maintaining principal directions, and build up a new SymTensor with the result.

Orientation3 - defined in base/src/orientation.h.
This class provides storage and manipulation of an orientation, or a direction in space. This
orientation can be specified either by a normal vector, or by a dip and dip direction.

In addition to the ConstitutiveModel and State interfaces, “conmodel007.dll” provides the
following two utility functions in “convert.h”: getYPFromBS() and getBSfromYP(). These
functions can be used to convert Young’s modulus and Poisson’s ratio values to bulk and shear
modulus values, and vice versa.

4.1.2.2 Example Constitutive Model

The source codes of all constitutive models used by UDEC are provided for the user to inspect or
adapt. Here we extract, for illustration, parts of the Mohr-Coulomb elastic/plastic model contained
in files “Modelexample.*”. Example 4.2 provides the class specification for the model, which also
includes the definition of the model’s unique type number. Note that there are more private variables
than property names (see the getProperties() member function). In this model, some of the
variables are for internal use only: they occupy memory in each zone, but they are not available for
the user of UDEC to change or print out. Also note that the getProperty()/setProperty
interface is used for Save/Restore.

Example 4.2 Class specification for the model: file “modelexample.h”

#pragma once

#include "../src/conmodel.h"

namespace models
{

class ModelExample : public ConstitutiveModel {
public:

ModelExample();

virtual String getName() const;
virtual String getFullName() const;
virtual UInt getMinorVersion() const;
virtual String getProperties() const;
virtual String getStates() const;
virtual Variant getProperty(UInt index) const;
virtual void setProperty(UInt index,const Variant &p,

uint restoreVersion=0);
virtual ModelExample *clone()

const {return new ModelExample(); }
virtual Double getConfinedModulus() const

{ return bulk_+shear_*4.0/3.0; }

UDEC Version 7.0



4 - 10 Constitutive Models

virtual Double getShearModulus() const { return shear_; }
virtual Double getBulkModulus() const { return bulk_; }
virtual bool supportsHystereticDamping() const {return true; }
virtual void copy(const ConstitutiveModel *mod);
virtual void run(UByte dim,State *s);
virtual void initialize(UByte dim,State *s);
// Optional
virtual Double getStressStrengthRatio(const SymTensor &st) const;
virtual void scaleProperties(const Double &scale,

const std::vector<UInt> &props);
virtual bool supportsStressStrengthRatio() const {return true;}
virtual bool supportsPropertyScaling() const { return true; }

private:
Double bulk_,shear_,cohesion_,friction_,dilation_,tension_;
Double e1_,e2_,g2_,nph_,csn_,sc1_,sc2_,sc3_,bisc_,e21_,rnps_;

};
} // namespace models

// EOF

Example 4.3 provides the constant definitions used by the model.

Example 4.3 Constant definition for the example

static const double d2d3 = 2.0 / 3.0;
static const double dPi=3.141592653589793238462643383279502884197169;
static const double dDegRad = dPi / 180.0;
static UserMohrModel usermohrmodel(true);

The constructor for this model was listed in Example 4.1. Example 4.4 provides listings of the
member functions for initialization and execution (“running”). Note that, to save time, private
model variables e1 , e2 , g2 , etc. are not computed at each cycle. Also note the use of the
State structure in providing strain increments and stresses. In general, separate sections should
be provided in every model for execution in two and three dimensions, to allow the same models to
be used efficiently in FLAC or UDEC. In this example, the 2D section is identical to the 3D section.
Please refer to the file “modelexample.cpp” for listings of member functions getProperties,
getStates, getProperty, setProperty and copy.

Example 4.4 Initialization and execution sections of the example model

/**************************** INITIALIZE *************************/
void ModelExample::initialize(UByte dim,State *s) {

ConstitutiveModel::initialize(dim,s);
e1_ = bulk_ + shear_*d4d3;

UDEC Version 7.0



WRITING NEW CONSTITUTIVE MODELS 4 - 11

e2_ = bulk_ - shear_*d2d3;
g2_ = shear_*2.0;
Double rsin = std::sin(friction_ * degrad);
nph_ = (1.0 + rsin) / (1.0 - rsin);
csn_ = 2.0 * cohesion_ * sqrt(nph_);
if (friction_) {

Double apex = cohesion_ / std::tan(friction_ * degrad);
tension_ = std::min(tension_,apex);

}
rsin = std::sin(dilation_ * degrad);
rnps_ = (1.0 + rsin) / (1.0 - rsin);
Double ra = e1_ - rnps_ * e2_;
Double rb = e2_ - rnps_ * e1_;
Double rd = ra - rb * nph_;
sc1_ = ra / rd;
sc3_ = rb / rd;
sc2_ = e2_ * (1.0 - rnps_) / rd;
bisc_ = std::sqrt(1.0 + nph_*nph_) + nph_;
e21_ = e2_ / e1_;

}

/**************************** RUN *************************/
void ModelExample::run(UByte dim,State *s) {

ConstitutiveModel::run(dim,s);
if (s->modulus_reduction_factor_>0.0) {

Double shear_new=shear_ * s->modulus_reduction_factor_;
e1_ = bulk_ + shear_new * d4d3;
e2_ = bulk_ - shear_new * d2d3;
g2_ = 2.0 * shear_new;
Double ra = e1_ - rnps_ * e2_;
Double rb = e2_ - rnps_ * e1_;
Double rd = ra - rb * nph_;
sc1_ = ra / rd;
sc3_ = rb / rd;
sc2_ = e2_ * (1.0 - rnps_) / rd;
e21_ = e2_ / e1_;

}
// plasticity indicator:
// store ’now’ info. as ’past’ and turn ’now’ info off
if (s->state_ & shear_now) s->state_ ¯ shear_past;
s->state_ &= ˜shear_now;
if (s->state_ & tension_now) s->state_ ¯ tension_past;
s->state_ &= ˜tension_now;
UInt plas = 0;

/* --- trial elastic stresses --- */

UDEC Version 7.0



4 - 12 Constitutive Models

Double e11 = s->stnE_.s11();//strain tensor normal components
Double e22 = s->stnE_.s22();
Double e33 = s->stnE_.s33();
s->stnS_.rs11() += e11 * e1_ + (e22 + e33) * e2_;
s->stnS_.rs22() += (e11 + e33) * e2_ + e22 * e1_;
s->stnS_.rs33() += (e11 + e22) * e2_ + e33 * e1_;
s->stnS_.rs12() += s->stnE_.s12() * g2_;
s->stnS_.rs13() += s->stnE_.s13() * g2_;
s->stnS_.rs23() += s->stnE_.s23() * g2_;

// default settings, altered below if found to be failing
s->viscous_ = true; // Allow stiffness-damping terms

if (canFail()) {
// Calculate principal stresses
SymTensorInfo info;
DVect3 prin = s->stnS_.getEigenInfo(&info);

/* --- Mohr-Coulomb failure criterion --- */
Double fsurf = prin.x() - nph_ * prin.z() + csn_;//
/* --- Tensile failure criteria --- */
Double tsurf = tension_ - prin.z();//
Double pdiv = -tsurf +

(prin.x() - nph_ * tension_ + csn_)
* bisc_;

/* --- tests for failure */
if (fsurf < 0.0 && pdiv < 0.0) {

plas = 1;
/* shear failure: correction to principal stresses */

s->state_ ¯ shear_now;
prin.rx() -= fsurf * sc1_;
prin.ry() -= fsurf * sc2_;
prin.rz() -= fsurf * sc3_;

} else if (tsurf < 0.0 && pdiv > 0.0) {
plas = 2;

/* tension failure: correction to principal stresses */
s->state_ ¯ tension_now;
Double tco = e21_ * tsurf;
prin.rx() += tco;
prin.ry() += tco;
prin.rz() = tension_;

}

if (plas) {
/* transform back to refrence frame */

UDEC Version 7.0



WRITING NEW CONSTITUTIVE MODELS 4 - 13

s->stnS_ = info.resolve(prin);
/* Inhibit stiffness-damping terms */

s->viscous_ = false;
}

}
}
} // namespace models

4.1.2.3 FISH Support for Constitutive Models

The following FISH intrinsic is available in UDEC:

block.zone.prop(zp,p name)

This can be used on the left- or right-hand side of an expression.

Thus,

val = block.zone.prop(zp,p name)

stores in val the floating-point value of the property named p name in the zone with index zp.
p name may be a string containing the property name, or a FISH variable that evaluates to such
a string. For example, block.zone.prop(zp,‘bulk’) would refer to the bulk modulus. If there is no
constitutive model in zp, or the model does not possess the named property, then 0.0 is returned.
Similarly,

block.zone.prop(zp,p name) = val

stores val in the property named p name in zone zp. Nothing is stored if there is no constitutive
model in zp, or if the model does not possess the named property, or val is not an integer or floating-
point number. In both uses, zp must be a zone index and p name must either be a string or a FISH
variable containing a string.

4.1.2.4 Loading and Running User-Written Model DLLs

Model DLL files may be loaded into UDEC while it is running by giving the program load cmodel
filename command, with the file name of the DLL. DLL files will be automatically loaded if they
are placed in the “exe64\plugins\cmodel” folder. Thereafter, the new model name and property
names will be recognized by UDEC and FISH functions that refer to the model and its properties.
If the program load cmodel command is given for a model that is already loaded, nothing will be
done, but an informative message will be displayed.

Before constitutive model plug-ins can be assigned to zones, the model must be configured for their
use by giving the block config cppudm command. Once so configured, the model will not cycle
unless your UDEC license includes the C++ plug-in option.

UDEC Version 7.0



4 - 14 Constitutive Models

4.1.2.5 Notes on Converting from the Previous Constitutive Model Interface

When converting a model written using the old constitutive model interface, the easiest thing to
do is to follow the steps for creating a new constitutive model project described in the previous
section. From that point, copy and edit methods from the old class to the new class. There are
several noteworthy specific changes:

• Model number and registration Booleans are no longer needed in constructors.

• The getName() method is equivalent to the old Keyword() method.

• The getFullName() method is equivalent to the old Name() method.

• The getProperties() method now returns a single string delimited by commas (,)
rather than an array of string pointers.

• The getStates() method now returns a single string delimited by commas (,) rather
than an array of string pointers.

• ThegetProperty() andsetProperty() functions now get/set aVariant rather
than a double. On return, this conversion will happen automatically; on set, you will
have to convert the Variant to a double using the toDouble() method.

• The Version() method is now called getMinorVersion().

• The SafetyFactor() method is now called getStressStrengthRatio().

• Note that initialize() is now called automatically by run() if isValid() re-
turns false. isValid() is automatically set to false when a property changes.

• The SaveRestore() function is no longer used; all serialization is done using the
property interface (getProperty()/setProperty()). If you have state variables
that need to be saved, they need to have property names.

• The HDampInit() function is no longer used. Instead, return true from support-
sHystereticDamping(), and use the hysteretic damping member of the
State class.

• The State class now supplies much of its information via virtual functions. This allows
little-used data to be calculated on demand, increasing overall efficiency.

• The STensor class is now called SymTensor. The six components of stress are no
longer public members, and must be accessed through member functions.

• Getting principal stress components and directions has been simplified through the
getEigenInfo() method and the SymTensorInfo utility class.

UDEC Version 7.0



WRITING NEW CONSTITUTIVE MODELS 4 - 15

4.2 Joints

This optional feature allows the use of joint constitutive models that are developed and compiled
outside of the executable code. The models exist as runtime dynamic link library (DLL) files. The
section contains instructions and examples that assist the user in developing their own specialized
joint constitutive models.

Use of the DLL models requires the use of the block config cppudm command. Any DLL model files
placed in the “UDEC700\exe64\plugins\jmodel” folder will be loaded automatically at start-up.
Otherwise, the models must be loaded via the program load jmodel<filename> command prior to
their use. The loaded models become part of the runtime code. The models themselves are not
saved or restored as part of the save files, so it is necessary to load any models that are not in the
“plugins” folder prior to restarting a save file that uses them.

4.2.1 Mohr Coulomb-Slip Joint Model

This basic joint constitutive model (“jmodelexample.cpp”) is the generalization of the Coulomb
friction law. This law works in a similar fashion both for contacts between rigid blocks and contacts
between deformable blocks. Both shear and tensile failure are considered, and joint dilation is
included.

In the elastic range, the behavior is governed by the joint normal and shear stiffnesses, Kn and Ks .

The contact displacement increments are used to calculate the elastic force increments. The normal
force increment, taking compressive force as positive, is

�Fn = −Kn �Un Ac (4.1)

and the shear force vector increment is

�Fsi = −Ks �Usi Ac (4.2)

where Ac = area of the contact.

The total normal force and shear force vectors are updated for the contact as

Fn = Fn +�Fn (4.3)

and

F si = F si +�Fsi (4.4)

UDEC Version 7.0



4 - 16 Constitutive Models

This instantaneous loss of strength approximates the “displacement-weakening” behavior of a joint.
The new contact forces are corrected in the following manner (note that normal compressive force
is positive).

for tensile failure:
If Fn < Tmax, then Fn = Tresidual (4.5)

for shear failure:

If F s > F smax, then F si = F si
F smax

F s
(4.6)

where the shear force magnitude, Fs , is given by

F s = (F si F
s
i )

1/2
(4.7)

Dilation takes place only when the joint is at slip. The shear increment magnitude, �Us , is given
by

�Us = (�Usi �U
s
i )

1/2
(4.8)

This displacement leads to a dilation of

�Un(dil ) = �Us tanψ (4.9)

where ψ is the dilation angle.

The normal force must be corrected to account for the effect of dilation – i.e.,

Fn = Fn +Kn AC �U
s tanψ (4.10)

Dilation is a function of the direction of shearing. Dilation increases if the shear displacement
increment is in the same direction as the total shear displacement, and decreases if the shear
increment is in the opposite direction.

This joint model is illustrated in Figure 4.1 for the case that joint cohesion is initially zero.

UDEC Version 7.0



WRITING NEW CONSTITUTIVE MODELS 4 - 17

1

2

3

4

Shear
stress

s

Shear displacement u s

increasing normal
effective stress

n

1
k s

4

3

2

1

Shear

u s

displacement

= 0

Critical displacement ucs

Dilational
component
of normal

displacement
increasing normal

effective stress
n

Dilation
angle

u n
d

Figure 4.1 Mohr-Coulomb slip model (for zero joint cohesion)

For an intact joint (i.e., without previous slip or separation), the tensile normal force is limited to

Tmax = −T Ac (4.11)

where T is the joint tensile strength.

The maximum shear force allowed is given by

F smax = c Ac + Fn tanφ (4.12)

where c and φ are the joint cohesion [stress] and friction angle.

Once the onset of failure is identified at the contact (in either tension or shear), and residual values
are specified, the tensile strength and cohesion are set to the residual values

Tmax = Tresidual (4.13)

F smax = CresidualAc + Fn tanφ (4.14)

UDEC Version 7.0



4 - 18 Constitutive Models

4.2.2 User-Defined Joint Models

4.2.2.1 Introduction

There is no FISH framework for adding joint constitutive models: the model must be written in
C++, and compiled as a DLL (dynamic link library) file that can be loaded whenever it is needed.
The main function of the model is to return new forces, given displacement increments. However,
the model must also provide other information (such as names) and perform operations such as
writing and reading save files.

In the C++ language, the emphasis is on an object-oriented approach to program structure, using
classes to represent objects. The data associated with an object are encapsulated by the object
and are invisible outside the object. Communication with the object is by member functions that
operate on the encapsulated data. In addition, there is strong support for a hierarchy of objects: new
object types may be derived from a base object, and the base-object’s member functions may be
superseded by similar functions provided by the derived objects. This arrangement confers a distinct
benefit in terms of program modularity. For example, the main program may need access to many
different varieties of derived objects in many different parts of the code, but it is only necessary to
make reference to base objects, not to the derived objects. The runtime system automatically calls
the member functions of the appropriate derived objects. A good introduction to programming in
C++ is provided by Stevens (1994); it is assumed that the reader has a working knowledge of the
language.

The methodology of writing a joint constitutive model in C++ is described in Section 4.2.2.2.
This includes descriptions of the base class, member functions, registration of models, information
passed between the model and the code and the model state indicators. The implementation of a
DLL model is described and illustrated in Section 4.2.2.3. This includes descriptions of the support
functions used by the model, the source code for an example model, FISH support for user-written
models, and the mechanism for creating and loading a DLL. All of the files referenced in this section
are contained in the “\ITASCA\UDEC700\pluginfiles\Jmodel” folder.

Note that a DLL must be compiled using Microsoft Visual Studio 2017 for operation in UDEC.

To get started quickly and provide a project for examination, take the following steps.

1. Install UDEC and run it. The first time you run it, application data will be copied to
Documents\Itasca\udec700 (by default).

2. Go to this folder and navigate to pluginfiles\jmodels\example.

3. Copy the examples folder and rename it.

4. Rename Example2017.sln, Example2017.vxproj, jmodelexample.h and jmodelexam-
ple.cpp to include the name of your new model in place of example2017 and example.

5. Open the solution in Visual Studio 2017.

6. Visual Studio will tell you that it cannot load the project. Click OK and then right click
on the Example project in the Solution Explorer and choose Remove.

UDEC Version 7.0



WRITING NEW CONSTITUTIVE MODELS 4 - 19

7. Right click on the solution and select Add -> Existing Project. Choose your renamed
project from step 4.

8. In the new project, remove jmodelexample.h and jmodelexample.cpp.

9. Add the renamed .h and .cpp files from step 4.

10. At the top of the .cpp file, change the name of the .h file to be included.

11. In the .h and .cpp file, do a search and replace to rename the class from jModelExample
to your model class.

12. Change the Solution Configuration to Release and the Solution Platform to x64

13. In the .cpp file, change the return values from extern "C" EXPORT TAG const char
*getName() to the name of your model. Note that the name has to be of the form
jmodelxxxx where xxxx is the name of the constitutive model.

14. Change the return value in the getName() function to be just the name of the model.

15. Change the return value for the getFullName function.

16. Go to ProjectâŁ“>Properties. Click on Configuration PropertiesâŁ“>General. Ensure
that the Configuration is set to Release and the platform is set to x64. Change the target
name to modelxxxx006 64 where xxxx is the name of your model.

17. Build the project. The dll should appear in the x64\release folder.

18. Make modifications to the model and rebuild.

19. Put the dll in the exe64\plugins\jmodel folder where UDEC is installed (e.g.,
C:\Program Files\Itasca\udec700\exe64\plugins\jmodel).

20. Start UDEC and use the command zone model xxxx to change the zone constitutive
model.

4.2.2.2 Methodology

Base Class for Constitutive Models

The methodology described above is exploited to provide support for user-written constitutive
models. A base class provides a framework for actual constitutive models, which are classes derived
from the base class. The base class, called JointModel, is termed an “abstract” class because
it declares a number of “pure virtual” member functions (signified by the =0 syntax appended to
the function prototypes). This means that no object of this base class can be created, and that
any derived-class object must supply real member functions to replace each one of the pure virtual
functions of JointModel. Example 4.5 provides a partial listing of JointModel (contained in
file “jconmodel.h”). Other functions are provided to manipulate and execute constitutive models;
there is no reason for a user-written model to use or redefine these.

UDEC Version 7.0



4 - 20 Constitutive Models

Example 4.5 Partial class definition for base class, ConstitutiveModel

#pragma once

#include "jmodelbase.h"
#include <vector>
#include <iostream>

// NOTE:
// The file name of the DLL produced must be jmodel<name><###>.dll
// or jmodel<name><###>_debug.dll (in debug).
// Where <name> is the string returned by getName(),
// and <###> is the Major version number (3 digits).
// For instance jmodelexample006.dll or jmodelexample006_debug.dll

namespace jmodels
{

struct State;

class JMODEL_EXPORT JointModel
{
public:

virtual String getName() const=0; // Must be unique, used
to identify model in save/restore, on command line, filename.

virtual String getPluginName() const { return getName(); }
virtual String getFullName() const=0; // Full name of model.
virtual UInt getMinorVersion() const; // Returns minor

version of base implementation, override for actual model.
virtual String getProperties() const=0; // comma delimited
virtual String getStates() const=0; // comma delimited
virtual Variant getProperty(UInt index) const=0; // Return

real/0.0 if property doesn’t exist.
virtual void setProperty(UInt index,const Variant &p,

UInt restoreVersion=0); // Calls
setValid(0). Return true if error.

// Allows data other than properties to be saved efficiently.
virtual void save(std::ostream &o) const;
// Allows data other than properties to be restored efficiently.
virtual void restore(std::istream &i,UInt restoreVersion);
virtual JointModel *clone() const=0;
virtual Double getMaxNormalStiffness() const=0;
virtual Double getMaxShearStiffness() const=0;
virtual void copy(const JointModel *mod);
virtual void run(UByte dim,State *s); // If !isValid(dim)

calls initialize(dim,s)

UDEC Version 7.0



WRITING NEW CONSTITUTIVE MODELS 4 - 21

virtual void initialize(UByte dim,State *s); // calls
setValid(dim)

// Optional
virtual Double getStressStrengthRatio(const Double &,

const DVect3 &) const
{ return(10.0); }

virtual void scaleProperties(const Double &,
const std::vector<UInt> &)
{ std::logic_error("Does not
support property scaling"); }

virtual bool supportsStressStrengthRatio() const
{ return(false); }

virtual bool supportsPropertyScaling() const
{ return(false); }

virtual void destroy() { delete this; }
virtual bool isSliding(const State &) { return false; }
virtual bool isBonded(const State &) { return true; }

JointModel();
virtual ˜JointModel();
// Major version changes when the interface changes.
static UInt getMajorVersion();
static UInt getLibraryMinorVersion();
// Indicates whether initializion is necessary - by dimension
bool isValid(UByte dimVal) const { return(valid_==dimVal); }
void setValid(UByte dimVal) { valid_ = dimVal; }
// Indicates whether failure should be allowed
bool canFail() const { return(can_fail_); }
void setIfCanFail(bool b) { can_fail_ = b; }
// Indicates whether the model was loaded as a plugin

(defaults to false).
bool getPlugIn() const { return plugin_; }
void setPlugIn(bool b) { plugin_ = b; }

private:
UByte valid_;
bool can_fail_;
bool plugin_;

};
} // namespace jmodels

// EoF

Member Functions

UDEC Version 7.0



4 - 22 Constitutive Models

Any derived constitutive-model class must provide actual functions to replace the virtual member-
functions in ConstitutiveModel. These functions perform several operations:

String getName()returns a string containing the name of the constitutive model as
the user will refer to it with the block contact cmodel assign command. For example,
‘èxample’’ would be a valid string in C++. This name must be unique, because it is
used to identify the model during the save/restore process.

String getFullName()returns a string containing the name of the constitutive
model that is to be used on printout. The name may or may not be the same as that
given by the Keyword member function, but note that long strings may be truncated on
printout. An example of a valid string is ‘èxample-mohr’’.

String getProperties()returns a string containing the names of model proper-
ties. This array of strings is a valid example: {‘‘JKN, JKS’’}. The given names will
be those recognized by the block contact property command.

String getStates()returns a string containing state names. The names are used
on printout and in plotting, to identify user-defined internal states of the model (e.g.,
tension). This array of strings is a valid example: {‘‘slip, tension,’’}. See the
variable mState in Section 4.1.1.4.

setProperty(UInt n, const variant &dVal)The value of dVal
supplied by the call comes from a command of the form block contact cmodel assign =
dVal; the supplied value of n is the sequence number (starting with 1) of the property
name previously specified by means of a getProperties() call. The model object
is required to store the supplied value in its appropriate private memory location.

Variant getProperty(UInt n)A value should be returned for the model prop-
erty of sequence number n (previously defined by a getProperties() call, with n
= 1 denoting the first property).

copy(const ConstitutiveModel *cm)This member function should first call
the base class Copy function, and then copy all essential data from the model object
pointed to by cm (assumed to be of the same derived class as the current model). It is
not necessary to copy data members that are recomputed when the Initialize()
function is called.

initialize(UInt uDim, State *ps)This function is called once for each
model object (i.e., for each full zone) when the CYCLE command is given. The model
object may perform initialization of its property or state variables, or it may do nothing.
The dimensionality (e.g., this is 2 for UDEC) is given as uDim, and structure ps (see
Section 4.1.1.4) contains current information for the contact containing the model object.

const char *Run(UInt uDim, JState *ps)This function is called for each
contact at each cycle. The model must update the forces from displacement increments.
The structure ps (see Section 4.1.1.4) contains the current force components and the
computed displacement components for the contact being processed.

UDEC Version 7.0



WRITING NEW CONSTITUTIVE MODELS 4 - 23

Double getMaxNormalStiffness()This function returns the maximum normal
stiffness. This is used to calculate a stable timestep.

Double getMaxShearStiffness()This function returns the maximum shear
stiffness. This is used to calculate a stable timestep.

UInt getMinorVersion The version number of the constitutive model should be
returned. This may be used to deal with the case of restoring files containing objects of
earlier versions of the model, which perhaps omit certain variables.

ConstitutiveModel *Clone(void)A new object (of the same class as the cur-
rent object) must be created, and a pointer to it of typeConstitutiveModel returned.
This function is called whenever a model is installed in a contact.

Double getStressStrengthRatio(const Double &sn,const
DVect3 &sstr)returns the ratio of strength to the yield stress based on the passed
normal stress, sn, and the shear stress components, sstr.

scaleProperties(const Double &val,const std::vector<UInt>
&array)scales the properties specified in the integer array by the value val. This is
used in the strength reduction scheme used in the factor-of-safety calculations.

Bool supportsStressStrengthRatio()returns true if strength ratio calcu-
lations are supported.

Bool supportsPropertyScaling()returns true if property scaling is sup-
ported for factor-of-safety calculations.

The model class definition should also contain a constructor that must invoke the base constructor.
The derived-class constructor should be called with no parameters, as in the Clone member
function. Initialization of data members may be performed by the constructor, as illustrated in
Example 4.6.

Example 4.6 Typical model constructor

JModelExample::JModelExample() :
kn_(0),
ks_(0),
cohesion_(0),
friction_(0),
dilation_(0),
tension_(0),
zero_dilation_(0),
res_cohesion_(0),
res_friction_(0),
res_dilation_(0),
res_tension_(0),
tan_friction_(0),

UDEC Version 7.0



4 - 24 Constitutive Models

tan_dilation_(0),
tan_res_friction_(0),
tan_res_dilation_(0)

{ }

Registration of Models

Each user-written joinr constitutive model is compiled into a DLL that must be instantiated in
the UDEC process. By convention, there are four exported functions in a DLL used as a plug-in
to UDEC: getName(), getMajorVersion(), getMinorVersion() and createIn-
stance(). You must also provide a stub function called DllMain(), which is called when the
library is loaded and unloaded from the system. For example, here is how these functions appear
for the example model:

Example 4.7 Global registration of a model object

#ifdef EXAMPLE_EXPORTS
int __stdcall DllMain(void *,unsigned, void *)
{

return 1;
}

extern "C" __declspec(dllexport) const char *getName()
{
#ifdef JMODELDEBUG

return "jmodelexampled";
#else

return "jmodelexample";
#endif
}

extern "C" __declspec(dllexport) unsigned getMajorVersion()
{

return MAJOR_VERSION;
}

extern "C" __declspec(dllexport) unsigned getMinorVersion()
{

return MINOR_VERSION;
}

extern "C" __declspec(dllexport) void *createInstance()
{

jmodels::JModelExample *m = new jmodels::JModelExample();
return (void *)m;

}

UDEC Version 7.0



WRITING NEW CONSTITUTIVE MODELS 4 - 25

#endif

Information Passed between Model and the Code during Cycling

The most important link between the code and a user-written model is the member-function
Run(UByte nDim, State *ps), which computes the mechanical response of the model
during cycling. A structure, State (defined in “state.h”), is used to transfer information to and
from the model. The members of State (all public) are as follows. Not all of the information
may be used by a particular code; the structure is intended to serve all Itasca codes.

Double Area contact area

Double normal force normal force

DVect3 shear force shear force

Double normal force inc normal force increment

DVect3 shear force inc shear force increment

Double normal disp normal displacement

DVect3 shear disp shear displacement

Double normal disp inc normal displacement increment

DVect3 shear disp inc shear displacement increment

Double dDnop fraction of normal displacement increment that causes contact tension
or separation

getTableIndexFromID(UInt id) returns table index for specified table number.

Double getYFromX(void *index,const Double &x) returns y-value
based on x from the table index.

Double getSlopeFromX(void *index,const Double &x) returns local
slope of table at point x.

Double working [max working ] This is a working area for values that must
be stored between run() calls.

Int iworking [max iworking ] This is a working area for values that must be
stored between run() calls.

Double getTimeStep() current timestep

UInt state Model state indicator flag (or bitmap). Specific bits in this flag correspond
to names in the States() member function. For example, a flag value of 1 (bit 0)
represents the first state, a value of 2 (bit 1) represents the second, a value of 4 (bit 2)

UDEC Version 7.0



4 - 26 Constitutive Models

represents the third, a value of 8 (bit 3) represents the fourth, etc. Any number of bits
may be selected simultaneously (for example, both shear and tensile yield may occur
together). See Section 4.2.2.2 for a description of the failure states and bit assignment.

Bool isThermal True if the thermal calculation mode is active.

Bool isCreep True if the creep calculation mode is active.

Bool isFluid True if the fluid (groundwater) calculation mode is active.

The main task of member-function Run() is to compute new forces from displacement increments.
In a slipping joint, it is also useful to communicate the internal state of the model, so that the state
may be plotted and printed. For example, the supplied models indicate whether they are currently
yielding or have yielded in the past. Each contact may set the variable mState, which records
the state of a model as a series of bits that can be on or off (1 or 0). Each bit can be associated
with a message that is displayed on the screen. The string returned by member function JStates
contains sub-strings corresponding to bit positions that the model may set in mState. The first
sub-string refers to bit 0, the second to bit 1, and so on. Several bits may be set simultaneously.
For example, both shear and tensile yield may occur together. The bit assignment is described in
Section 4.2.2.2.

State Indicators

Each contact has a state indicator. The member variable has 32 bits that can be used to represent
a maximum of 31 distinct states. The state indicator bits are used by built-in constitutive models
to denote slip in a contact. See Table 4.2 for bit assignment and the corresponding failure state for
built-in constitutive models.

UDEC Version 7.0



WRITING NEW CONSTITUTIVE MODELS 4 - 27

Table 4.2 Failure states and bit assignments

Hex Decimal Binary

slip-n = 0x0001 1 0000 0000 0000 0001
tension-n = 0x0002 2 0000 0000 0000 0010
slip-p = 0x0004 4 0000 0000 0000 0100
tension-p = 0x0008 8 0000 0000 0000 1000
unused = 0x0010 16 0000 0000 0001 0000
unused = 0x0020 32 0000 0000 0010 0000
unused = 0x0040 64 0000 0000 0100 0000
unused = 0x0080 128 0000 0000 1000 0000
unused = 0x0100 256 0000 0001 0000 0000
unused = 0x0200 512 0000 0010 0000 0000
unused = 0x0400 1024 0000 0100 0000 0000
unused = 0x0800 2048 0000 1000 0000 0000
unused = 0x1000 4096 0001 0000 0000 0000
unused = 0x2000 8192 0010 0000 0000 0000
unused = 0x4000 16384 0100 0000 0000 0000
unused = 0x8000 32768 1000 0000 0000 0000

For user-defined constitutive models, the user can create a named state and assign any particular
bit for that state, and subsequently update the contact state indicator variable. The named states in
Table 4.2 are used by built-in constitutive models to update the failure states of contacts. If users
use the state indicator variable to indicate failure states in their created model, they should make
sure that there is no conflict with failure state constants of built-in models if they plan to use both
of them in an analysis.

The code calls the constitutive model function Run() for each contact to update its force values.
Typically, the state indicator is also updated in this process by the constitutive model. For built-in
models, the state indicator denotes the failure state of the contact. This is updated by the constitutive
model using the logical “or” (|) operation with the contact state indicator variable and the current
failure state calculated by the constitutive model. The user should be certain to appropriately set or
un-set all previous states updated prior to the current state calculated by the constitutive model. The
state of a contact can then be checked using the logical “and” (&) operator with the state variable
and desired user-defined state.

UDEC Version 7.0



4 - 28 Constitutive Models

4.2.2.3 Implementation

Example Constitutive Model

Here we extract, for illustration, parts of the Mohr-Coulomb elastic/plastic model contained in
files “Jmodelexample.*”. Example 4.8 provides the class specification for the model, which
also includes the definition of the model’s unique type number. Note that there are more private
variables than property names (see the Properties()member function). In this model, some of
the variables are for internal use only: they occupy memory in each zone, but they are not available
for the user to change or print out.

Example 4.8 Class specification for model: file “Jmodelexample.h”

#pragma once

#include "../src/jointmodel.h"

namespace jmodels
{

class JModelExample : public JointModel {
public:

JModelExample();
virtual String getName() const;
virtual String getPluginName() const { return getName(); }
virtual String getFullName() const;
virtual UInt getMinorVersion() const;
virtual String getProperties() const;
virtual String getStates() const;
virtual Variant getProperty(UInt index) const;
virtual void setProperty(UInt index,const Variant &p,

UInt restoreVersion=0);
virtual JModelExample *clone()

const { return new JModelExample(); }
virtual Double getMaxNormalStiffness() const { return kn_; }
virtual Double getMaxShearStiffness() const { return ks_; }
virtual void copy(const JointModel *mod);
// If !isValid(dim) calls initialize(dim,s)
virtual void run(UByte dim,State *s);
// calls setValid(dim)
virtual void initialize(UByte dim,State *s);
// Optional
virtual Double getStressStrengthRatio(const Double &,

const DVect3 &)
const { return 10.0; }

virtual void scaleProperties(const Double &,
const std::vector<UInt> &)

UDEC Version 7.0



WRITING NEW CONSTITUTIVE MODELS 4 - 29

{ throw std::exception
("Does not support property scaling"); }

virtual bool supportsStressStrengthRatio() const
{ return false; }

virtual bool supportsPropertyScaling() const
{ return false; }

private:
Double kn_;
Double ks_;
Double cohesion_;
Double friction_;
Double dilation_;
Double tension_;
Double zero_dilation_;
Double res_cohesion_;
Double res_friction_;
Double res_dilation_;
Double res_tension_;
Double tan_friction_;
Double tan_dilation_;
Double tan_res_friction_;
Double tan_res_dilation_;
Int kn_tab_;
Int ks_tab_;

};
} // namespace models

Example 4.9 provides the constant definitions used by the model as well as the global instantiation
of the model, as discussed in Section 4.2.2.2.

Example 4.9 Constant definition for Mohr-Coulomb model

static const Double dPi=3.1415926535897932384626433832795028841971693;
static const Double dDegRad = dPi / 180.0;

The constructor for this model was listed in Example 4.6. Example 4.10 provides listings of the
member functions for initialization and execution (“running”). Also note the use of the State
structure in providing displacement increments and forces. In general, separate sections should
be provided in every model for execution in two and three dimensions, to allow the same models
to be used efficiently. In this example, the 2D section is identical to the 3D section. Please
refer to the file “jmodelexample.cpp” for listings of member functions Properties, States,
GetProperties, SetProperties, Copy and SaveRestore.

UDEC Version 7.0



4 - 30 Constitutive Models

Example 4.10 Initialization and execution sections of the Mohr-Coulomb model

/***************************** Initialize ***************************/
void JModelExample::initialize(UByte dim,State *s)
{

JointModel::initialize(dim,s);
tan_friction_ = tan(friction_ * dDegRad);
tan_res_friction_ = tan(res_friction_ * dDegRad);
tan_dilation_ = tan(dilation_ * dDegRad);
tan_res_dilation_ = tan(res_dilation_ * dDegRad);

}

void JModelExample::run(UByte dim,State *s)
{

JointModel::run(dim,s);
/* --- state indicator: */
/* store ’now’ info. as ’past’ and turn ’now’ info off ---*/
if (s->state_ & slip_now) s->state_ ¯ slip_past;
s->state_ &= ˜slip_now;
if (s->state_ & tension_now) s->state_ ¯ tension_past;
s->state_ &= ˜tension_now;

Double kna = kn_ * s->area_;
Double ksa = ks_ * s->area_;

// normal force
Double fn0 = s->normal_force_;
s->normal_force_inc_ = -kna * s->normal_disp_inc_;
s->normal_force_ += s->normal_force_inc_;

// correction for time step in which joint opens
// (or goes into tension)
// s->dnop_ is part of s->normal_disp_inc_ at
// which separation or tension takes place
s->dnop_ = s->normal_disp_inc_;
if ((fn0 > 0.0) &&

(s->normal_force_ <= 0.0) &&
(s->normal_force_inc_ < 0.0))

{
s->dnop_ = -s->normal_disp_inc_ * fn0 / s->normal_force_inc_;
if (s->dnop_ > s->normal_disp_inc_) s->dnop_ =

s->normal_disp_inc_;
}

// tensile strength

UDEC Version 7.0



WRITING NEW CONSTITUTIVE MODELS 4 - 31

Double ten;
if (s->state_)

ten = -res_tension_ * s->area_;
else

ten = -tension_ * s->area_;

// check tensile failure
bool tenflag = false;
if (s->normal_force_ <= ten)
{

s->normal_force_ = ten;
if (!s->normal_force_)
{

s->shear_force_ = DVect3(0,0,0);
tenflag = true; // complete tensile failure

}
s->state_ ¯ tension_now;
s->normal_force_inc_ = 0.0;
s->shear_force_inc_ = DVect3(0,0,0);

}

// shear force
if (!tenflag)
{

s->shear_force_inc_ = s->shear_disp_inc_ * -ksa;
s->shear_force_ += s->shear_force_inc_;
Double fsm = s->shear_force_.mag();
// shear strength
Double fsmax;
if (!s->state_)

fsmax=cohesion_ * s->area_ + tan_friction_ * s->normal_force_;
else
{ // if residual friction is zero, take peak value

Double resamueff = tan_res_friction_;
if (!resamueff) resamueff = tan_friction_;
fsmax=res_cohesion_ * s->area_ + resamueff * s->normal_force_;

}
if (fsmax < 0.0) fsmax = 0.0;
// check for slip
if (fsm >= fsmax)
{

Double rat = 0.0;
if (fsm) rat = fsmax / fsm;
s->shear_force_ *= rat;
s->state_ ¯ slip_now;
s->shear_force_inc_ = DVect3(0,0,0);

UDEC Version 7.0



4 - 32 Constitutive Models

// dilation
if (dilation_)
{

Double zdd = zero_dilation_;
Double usm = s->shear_disp_.mag();
if (!zdd) zdd = 1e20;
if (usm < zdd)
{

Double dusm = s->shear_disp_inc_.mag();
Double dil = 0.0;
if (!s->state_) dil = tan_dilation_;
else
{

// if residual dilation is zero, take peak value
// Double resdileff = tan_res_dilation_;
Double resdileff = tan_dilation_;
if (!resdileff) resdileff = tan_dilation_;
dil = resdileff;

}
s->normal_force_ += kna * dil * dusm;

}
} // dilation

} // fsm>fsmax
} // if (!tenflg)

}

} // namespace models

UDEC Version 7.0



WRITING NEW CONSTITUTIVE MODELS 4 - 33

4.3 References

Stevens, A. Teach Yourself C++, 4th Ed. New York: MIS Press (1994).

UDEC Version 7.0



4 - 34 Constitutive Models

UDEC Version 7.0


