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4 Response of an Unlined Circular Tunnel in a Biaxial Stress Field

4.1 Problem Statement

Crushing failure is an important mechanism by which unlined tunnels may fail. Crushing is treated
as a static phenomenon and involves massive failure around the excavation due to large-scale plastic
flow. The purpose of this verification example is to demonstrate the ability of UDEC to model large-
scale plastic flow.* The verification was accomplished by comparing UDEC results to those from
a closed-form solution that includes plastic flow behavior.

The problem involves a circular tunnel subjected to a non-hydrostatic static load. The medium
surrounding the tunnel is treated as an elasto-plastic material with failure defined by a Mohr-
Coulomb yield function. The dilatancy of the material at failure is defined by the flow rule, which
is characterized by the dilatancy angle. Both fully dilatant and non-dilatant material behaviors are
verified.

The objective of this problem is to test the elasto-plastic material model used to describe the nonlinear
deformational behavior of fully deformable blocks in UDEC. This test specifically addresses the
ability of the code to simulate plastic flow accurately.

4.2 Analytical Solution

Two conventional closed-form techniques used for preliminary analyses of circular tunnels subjected
to far-field mechanical loading are the solutions presented by Newmark et al. (1970) and Hendron
and Aiyer (1971). These solutions idealize the problem as a static, two-dimensional analysis of a
circular tunnel in a hydrostatic stress field. The surrounding medium is treated as an elasto-plastic
material with failure defined by a Mohr-Coulomb yield function. The dilatancy of the material at
failure is defined by the plasticity flow rule, which is characterized by the dilatancy angle. The
Newmark solution assumes a fully nonassociated flow rule (i.e., no dilatancy occurs at failure). The
Hendron and Aiyer solution assumes a fully associated flow rule (i.e., the dilatancy angle equals
the friction angle).

Detournay (1983) obtained the general solution for non-hydrostatic loading by the development
of a semi-analytical technique. This approach applies for arbitrary dilatancy of the material, and
therefore makes the solutions of Newmark and Hendron and Aiyer special cases of the Detournay
solution. For this reason, the Detournay solution was selected as a more rigorous verification test
of UDEC.

Note that all three solutions are based on infinitesimal (small) strain theory, which assumes that
the initial geometry of a deforming body is not appreciably altered during the deformation process.
The consequence of this assumption is discussed later.

* This section was prepared for the U.S. Nuclear Regulatory Commission under U.S. NRC Contract
No. 02-85-002.
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The normalized stresses and displacements of the problem can be written in dimensionless form,
as functions of independent variables and problem parameters:
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where σij = stresses;
ur = radial displacement;
r = radial coordinate;
θ = angle;
a = tunnel radius;
q = uniaxial compressive strength;
σ1, σ2 = far-field principal stresses;
ν = Poisson’s ratio;
G = shear modulus;
φ = internal friction angle; and
ψ = dilation angle.

Therefore, the normalized radial displacement of crown (i.e., r/a = 1, θ = π/2) of the tunnel
excavated in the rock characterized by given friction angle, φo, dilation angle, ψo, and Poisson’s
ratio, νo, can be written as
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while the normalized radial displacement of springline (r/a = 1, θ = 0) is

Usr = Ur
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Functions Ucr and Usr can be conveniently represented in the form of design charts. Figure 4.1
presents two charts: (1) for associative material, φo = 30◦ and ψo = 30◦; and (2) for non-
associative material, φo = 30◦ and ψo = 30◦ (in both cases, Poisson’s ratio, νo = 0.25). The
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normalized displacements due to tunnel excavation for any free-field state of stress can be read
from the charts by interpolating between the plotted contours. Actual radial displacements, ur , can
be calculated from the normalized displacements, Ur , from

ur = a q

2G
Ur (4.5)

Alternatively, the percentage closure ûr = 100 (ur/a) can be expressed as

ûr = 50q

G
Ur (%) (4.6)

These displacements apply for the case of a tunnel excavation in a rock mass previously stressed
to the far-field stress state. The charts, therefore, calculate displacements due to the initial state of
stress. The displacements induced by additional external loading differ from those calculated by
the charts by an amount equal to the elastic displacements that would occur in the absence of the
tunnel. The corrections for added external loading are

at the crown

�Ucr = (1 − 2ν)
σ1 + σ3

2q
+ σ1 − σ3

2q
(4.7)

at the springline

�Usr = (1 − 2ν)
σ1 + σ3

2q
− σ1 − σ3

2q
(4.8)

The percentage closure for added external loading is then

ukr = 50q

G
(Ukr +�Ukr ) k = c, s (4.9)
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Figure 4.1 Normalized radial displacements (Ur ) results of closed-form so-
lution
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4.3 UDEC Model

The UDEC model is automatically generated (using FISH) as a function of independent dimen-
sionless parameters of the problem (i.e., ν, φ, ψ and normalized far-field stresses) and normalized
lengths pertinent to the discrete numerical model (i.e., normalized zone size, 	z/a, and normalized
distance to the far-field boundaries, 	M/a).

Two particular cases have been solved in this verification problem:

Material Properties Case I Case II

Poisson’s ratio (ν) 0.25 0.25
angle of internal friction (φ) 30◦ 30◦
dilation angle (ψ) 30◦ 0

Far-field stresses that satisfy the relation

(σ1 − σ2)

q
= 0.25

(σ1 + σ2)

q

are applied in steps (expressed in normalized form), as shown in Table 4.1.

Table 4.1 Loading steps for circular tunnel in a
non-hydrostatic stress field

Step σ1+σ3
q

σ1−σ3
q

1.0 0.25
1 1.5 0.375
2 2.0 0.5
3 2.5 0.625
4 3.0 0.75
5 3.5 0.875
6 4.0 1.0

The UDEC model for the given test problem is illustrated in Figure 4.2. The model is one quadrant
of the tunnel and surrounding rock. The bottom and left boundaries shown in the figure are lines of
symmetry. The model is divided into a series of concentric “rings” with increasing spacing between
“ring” cuts. In this way, the block zoning can be increased away from the hole. In the first few
“rings” adjacent to the hole, it is possible to create a mesh of diagonally opposed triangular zones.
The zoning, generated from the condition that 	z/a = 0.05 in the first “ring” around the tunnel, is
shown in Figure 4.3.
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Figure 4.2 Plot of “glued” joints in UDEC model used to improve zonal
discretization in model

Particular dimensional variables in these simulations are

tunnel radius (a) 0.254 m
shear modulus (G) 4.49 GPa
cohesion (c)∗ 9.95 MPa

∗ Unconfined compressive strength is related to cohesion by q = 2c cosφ
1−sin φ .

UDEC Version 7.0



Response of an Unlined Circular Tunnel in a Biaxial Stress Field 4 - 7

(a) problem discretization

(b) problem discretization near tunnel periphery

Figure 4.3 UDEC model
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The tunnel closure results are very sensitive to the location of the model boundaries. Goodman
(1980, p. 236) notes that plastic behavior of the region in the vicinity of a tunnel has the effect
of extending the influence of the tunnel a considerable distance into the surrounding rock. For
elasto-plastic behavior, a distance of 10 tunnel radii from the tunnel is required to bring the stress
perturbation to within 10% of the initial stress state. Therefore, the model is generated such that
	M/a = 20.

The joints between the blocks are “glued” by setting the cohesion and tensile strength of the contacts
to values much higher than the applied loads. The normal and shear stiffnesses of the joints are set
equal to a value that produces an equivalent elastic modulus for the model within 1.5% of the given
Young’s modulus.

4.4 Results and Discussion

Analytically calculated radial displacements of the springline and crown for the problem parameters
used in numerical simulations are summarized in Table 4.2. These results demonstrate the signif-
icant influence of dilatancy on the deformation of the tunnel at the springline. For these problem
conditions, the closure at the springline is nearly three times greater for the dilatant material versus
the non-dilatant material, while the closure at the crown is virtually unaffected.

Table 4.2 Calculated closure from Detournay solution
σ1−σ3
q

σ1+σ3
q

Usr �Usr ûsr % Ucr �Ucr ûcr %

ψ = 0 0.375 1.5 0.55 0.19 0.27 1.25 0.56 0.67
0.50 2.0 0.9 0.25 0.42 1.75 0.75 0.92
0.625 2.5 1.5 0.31 0.66 2.4 0.94 1.23
0.75 3.0 2.25 0.38 0.97 3.15 1.12 1.57
0.875 3.5 3.1 0.44 1.30 3.8 1.31 1.88
1.0 4.0 4.0 0.5 1.65 4.7 1.5 2.28

ψ = 30◦ 0.375 1.5 0.55 0.19 0.27 1.25 0.56 0.67
0.50 2.0 2.0 0.25 0.83 1.75 0.75 0.92
0.625 2.5 3.75 0.31 1.49 2.35 0.94 1.21
0.75 3.0 6.0 0.38 2.35 3.05 1.12 1.53
0.875 3.5 9.0 0.44 3.47 3.8 1.31 1.88
1.0 4.0 12.8 0.50 4.89 4.75 1.5 2.30

The comparison of the UDEC results to the Detournay solution is given in Table 4.3 and, graphically,
in Figure 4.4.
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Table 4.3 Comparison of UDEC results to Detournay solution

Crown Closure ûcr Springline Closure ûsr
Analytic UDEC Error Analytic UDEC Error

Solution (%) % % Solution (%) % %
Elastic 0.620 0.619 −0.2 .207 0.203 −2.0

Elasto-Plastic
(ψ = 0◦)

Step 1 0.67 0.66 −1.5 0.27 0.26 −3.7
2 0.92 0.92 0.0 0.42 0.42 0.0
3 1.23 1.21 −1.6 0.66 0.64 −3.0
4 1.57 1.53 −2.5 0.97 0.92 −5.2
5 1.88 1.87 −0.5 1.30 1.24 −4.6
6 2.28 2.22 −2.6 1.65 1.61 −2.4

Elasto-Plastic
(ψ = 30◦)

Step 1 0.66 0.66 0.0 0.42 0.44 4.8
2 0.92 0.91 −1.1 0.83 0.81 −2.4
3 1.21 1.20 −0.8 1.49 1.44 −3.4
4 1.53 1.52 −0.7 2.35 2.29 −2.6
5 1.88 1.86 −1.1 3.47 3.33 −4.0
6 2.30 2.24 −2.6 4.89 4.63 −5.3
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(ψ = 0◦)

(ψ = 30◦)

Figure 4.4 Comparison of crown and springline closures for UDEC and
analytic solutions
Table 2 – Usr , UDEC
Table 3 – Ucr , UDEC
Table 4 – Usr , analytic solution
Table 5 – Ucr , analytic solution
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Constant-strain triangular elements such as those used in UDEC tend to inhibit incompressible
plastic flow, and may produce an excessively stiff and incorrect calculation for plastic flow. Nagte-
gaal et al. (1974) discuss procedures to improve the representation of plastic flow for triangular
elements. One technique is the mixed-discretization procedure (Marti and Cundall 1982), which
reduces the constraints on plastic flow by using different numerical discretization for the isotropic
and deviatoric parts of the strain tensor. This scheme works well for uniform grids composed of
equal pairs of triangular elements. Mixed-discretization is not used in UDEC because the creation
of arbitrarily shaped blocks makes the discretization of uniform grids of paired triangular elements
difficult. An alternative approach, used in UDEC for this test problem, is to first divide the model
such that a grid of diagonally opposed triangles can be generated immediately adjacent to the ex-
cavation. Nagtegaal et al. (1974) show that meshes composed of diagonally opposed triangles also
will produce a good representation for plastic flow.

The material deformation model used in UDEC is based upon finite strain theory. Comparisons
between small- and large-strain calculations made by others (e.g., Carter et al. 1977) demonstrate
that at a given strain level, compressive stresses will be higher for a large-strain calculation than for
a small-strain calculation. This difference is attributed to the change in stress-rate vector as well
as the change in strain-rate vector, which is accounted for in the large-strain formulation and leads
to increased stress concentration with increased deformation. Hence, the small-strain formulation
used in the closed-form solutions will give a more conservative (higher) calculation for tunnel
closure than that calculated with the large-strain formulation.

The large closure produced for the given problem conditions, particularly at the associated flow
state, poses a rigorous test for the failure model used in UDEC. Problems that involve large strain
and collapse require a numerical scheme that allows locally incompressible plastic flow.

The plasticity model appears to perform correctly in UDEC. In general, the agreement with the
Detournay solution is reasonable; the average error can be attributed to the differences between
the small- and large-strain formulation. However, a fine mesh and model boundaries at least 10
tunnel radii from the tunnel are required to produce accurate displacement calculations for plasticity
analysis with the code.

UDEC Version 7.0



4 - 12 Verification Problems

4.5 References

Carter, J. P., J. R. Booker and E. H. Davis. “Finite Deformation of an Elasto-Plastic Soil,” Int. J.
Num. & Analy. Meth. Geomech., 1, 25-43 (1977).

Detournay, E. “Two-Dimensional Elasto-Plastic Analysis of a Deep Cylindrical Tunnel Under
Non-Hydrostatic Loading.” Ph.D. Dissertation, University of Minnesota (1983).

Goodman, R. E. Introduction to Rock Mechanics. New York: John Wiley & Sons (1980).

Hendron, A. J., Jr., and A. K. Aiyer. “Stresses and Strains Around a Cylindrical Tunnel in an
Elasto-Plastic Material with Dilatancy,” U.S. Army Corps of Engineers, Omaha District (January
1971).

Marti, J., and P. A. Cundall. “Mixed Discretization Procedure for Accurate Solution of Plasticity
Problems,” Int. J. Num. Meth. Eng., 6, 129-139 (1982).

Nagtegaal, J. C., D. M. Parks and J. R. Rice. “On Numerically Accurate Finite Element Solutions
in the Fully Plastic Range,” Comp. Meth. Appl. Mech., 4, 153-177 (1974).

Newmark, N. M., et al. “Ground Motion Technology Review,” Nathan M. Newmark Consulting
Engineering Services (Urbana, Illinois), SAMSO, TR-70-114 (April 1970).

UDEC Version 7.0



Response of an Unlined Circular Tunnel in a Biaxial Stress Field 4 - 13

4.6 Listing of Data Files

Example 4.1 TUN IN.DAT

new
;---------------------------------------------------------
; Verification test:
; Circular tunnel in non-hydrostatic stress field
;
; Input data
;---------------------------------------------------------
;
; case 1 - associative material
;
;---------------------------------------------------------
call ’cont_tun.fis’
;
; --- friction angle ---
;
fish set @phi 30.
;
; --- dilation angle ---
;
fish set @ksi 30.
;
; --- Poisson’s ratio ---
;
fish set @poisson 0.25
;
; --- loading path ---
;
table 1 add 1.5 0.375 2.0 0.5 2.5 0.625 3.0 0.75 3.5 0.875 4.0 1.0
;
; --- zone size ---
;
fish set @a_z 20.
;
; --- model size ---
;
fish set @r_a 20.
;
; --- analytic solution for comparison ---
; --- springline ---
;
table 4 add 1.5 0.42 2.0 0.83 2.5 1.49 3.0 2.35 3.5 3.47 4.0 4.89
;
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; --- crown ---
;
table 5 add 1.5 0.66 2.0 0.92 2.5 1.21 3.0 1.53 3.5 1.88 4.0 2.30
call ’tun.dat’
new
;---------------------------------------------------------
;
; case 2 - non-associative material
;
;---------------------------------------------------------
call ’cont_tun.fis’
fish set @phi 30.
fish set @ksi 0.
fish set @poisson 0.25
table 1 add 1.5 0.375 2.0 0.5 2.5 0.625 3.0 0.75 3.5 0.875 4.0 1.0
fish set @a_z 20.
fish set @r_a 20.
table 4 add 1.5 0.27 2.0 0.42 2.5 0.66 3.0 0.97 3.5 1.30 4.0 1.65
table 5 add 1.5 0.67 2.0 0.92 2.5 1.23 3.0 1.57 3.5 1.88 4.0 2.28
call ’tun.dat’
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Example 4.2 CONT TUN.FIS

;---------------------------------------------------------
; Verification test:
; Circular tunnel in non-hydrostatic stress field
;
; Model preparation, control and post-processing
;---------------------------------------------------------
;
fish define setup
;
; --- title of simulation ---
;

ta = int(phi)
pa = int(ksi)
psn = int(100.*poisson)
run_t = ’Deep tunnel: friction ’+string(ta)+’, dilation ’+string(pa)
run_t = run_t+’, Poisson ratio 0.’+string(psn)
nam_t = ’tf’+string(ta)+’d’+string(pa)
nam_geo = nam_t+’g.sav’
nam_e = nam_t+’e.sav’

;
; --- UDEC parameters ---
;

a = 0.254
coh_v = 9.95e6
shear_m = 4.69e9
bulk_m = 2.*(1.+poisson)*shear_m/(3.*(1.-2.*poisson))
ucs = 2.0*coh_v*math.cos(phi*math.degrad)/(1.-math.sin(phi*math.degrad))

;
; --- parameters used in generation of model geometry ---
;

large = bulk_m*1e10
if a_z < 5. then

a_z = 5.
end_if
if r_a < 5. then

r_a = 5.
end_if
zone = a/a_z
j_stiff = 10.*(bulk_m+4.*shear_m/3.)/zone
mod_size = a*r_a
ahalf = 0.5*a
small_len = 0.2*zone
n_small_len = -small_len
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a_l = a - small_len
a_u = a + small_len
mod_size_u = 1.02 * mod_size
mod_size_l = 0.98 * mod_size
rrat = 1.3

end
;
fish define rings
;
; --- generation of circular rings ---
;

d1 = 0.5*a_z*zone
if rrat # 1. then

nrings = math.ln(1.-(mod_size-a)*(1.-rrat)/d1)/math.ln(rrat)
nrings = int(nrings)
coef = nrings*math.ln(rrat)
coef = math.exp(coef)
d1 = (mod_size-a)*(1.-rrat)/(1.-coef)

else
nrings = int((mod_size-a)/d1)
d1 = (mod_size-a)/nrings

end_if
di = d1
dr = a
loop i (1,nrings)

command
block cut tunnel 0 0 @dr 64

end_command
dr = dr + di
di = di*rrat

end_loop
end
;
fish define gzones
;
; --- zoning of the model ---
;

dr = a
di = d1
dri = dr + di
jump = 2
loop i (1,nrings-1)

command
block zone generate quad @zone ...

range annulus center 0 0 radius @dr @dri
end_command
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zone = jump*dri*zone/dr
if i > 2 then

jump = 1
end_if
dr = dri
di = di * rrat
dri = dri + di
if zone > 0.5*(dri-dr) then

zone = 0.5*(dri-dr)
end_if

end_loop
zone = 0.5*(mod_size - dri + di)
if zone < 0.1*mod_size then

zone = 0.1*mod_size
end_if
if zone > 0.25*mod_size then

zone = 0.25*mod_size
end_if
command

block zone generate edge @zone
end_command

end
;
fish define ff_load
;
; --- boundary conditions from table 1 and cycling of the UDEC
; model
;

crown = block.gp.near(0,a)
spring = block.gp.near(a,0)
ff_v = block.gp.near(0,mod_size)
ff_h = block.gp.near(mod_size,0)
i = 1
dev = table.y(1,i)
sph = table.x(1,i)
loop while table.x(1,i) # 0

syy = -0.5*ucs*(dev+sph)
sxx = -0.5*ucs*(sph-dev)
command

block mechanical damp initial
block edge apply stress 0 0 @syy ...

range pos-x @n_small_len @mod_size_u pos-y @mod_size_l @mod_size_u
block edge apply stress @sxx 0 0 ...

range pos-x @mod_size_l @mod_size_u pos-y @n_small_len @mod_size_U
block gridpoint apply velocity-x 0.0 ...

range pos-x @n_small_len @small_len pos-y @n_small_len @mod_size_u
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block gridpoint apply velocity-y 0.0 ...
range pos-x @n_small_len @mod_size_u pos-y @n_small_len @small_len

block solve ratio 2e-6
end_command
if i = 1 then

command
model save @nam_e

; --- allow plastic failure ---
block change model 3
block property material 1 cohesion @coh_v
block solve ratio 2e-6

end_command
end_if
nam_p = nam_t+string(i)+’.sav’
table.x(2,i) = table.x(1,i)
table.y(2,i) = 100.*math.abs(block.gp.disp.x(spring))/a
table.x(3,i) = table.x(1,i)
table.y(3,i) = 100.*math.abs(block.gp.disp.y(crown))/a
command

model save @nam_p
end_command
if math.abs(block.gp.pos.x(ff_h)) > math.abs(block.gp.pos.y(ff_v)) then

mod_size_l = 0.98*block.gp.pos.y(ff_v)
else

mod_size_l = 0.98*block.gp.pos.x(ff_h)
end_if
i = i+1
sph = table.x(1,i)-table.x(1,i-1)
dev = table.y(1,i)-table.y(1,i-1)

end_loop
end
return

Example 4.3 TUN.DAT

;---------------------------------------------------------
; Verification test:
; Circular tunnel in non-hydrostatic stress field
;
; UDEC commands
;---------------------------------------------------------
;
; --- problem setup ---
;
@setup
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model title @run_t
round = 0.002
;
; --- generation of geometry
;
block 0 0 0 @mod_size @mod_size @mod_size @mod_size 0
@rings
block delete range pos-x 0 @ahalf pos-y 0 @ahalf
@gzones
model save @nam_geo
;
; --- define material properties ---
;
prop mat=1 den=1 bulk =@bulk_m shear=@shear_m
;
; --- model is cycled elastically for the first loading step
;
prop mat=1 coh=@large fri=@phi dil=@ksi ten=@large
;
; --- glue joints ---
;
prop mat=1 jkn=@j_stiff jks=@j_stiff jcoh=@large jten=@large
;
set dscan 10000
;
; --- local damping ---
;
damp local
insitu stress -1 0 -1 szz -0.5
;
; --- histories ---
;
hist interval 50
hist xdis (@a,0)
hist ydis (0,@a)
hist damp
model display hist 1
;
@ff_load
ret
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