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1 BLOCK CONSTITUTIVE MODELS

1.1 Introduction

Numerical solution schemes face several difficulties when implementing constitutive models to
represent geomechanical material behavior. There are three characteristics of geo-materials that
cause particular problems. One is physical instability. Physical instability can occur in a material
if there is the potential for softening behavior when the material fails. When physical instability
occurs, part of the material accelerates and stored energy is released as kinetic energy. Numerical
solution schemes often have difficulties at this stage because the solution may fail to converge when
a physical instability arises.

A second characteristic is the path dependency of nonlinear materials. In most geomechanical
systems, there are an infinite number of solutions that satisfy the equilibrium, compatibility and
constitutive relations that describe the system. A path must be specified in order for a “correct”
solution to be found. For example, if an excavation is made suddenly (e.g., by explosion), then the
solution may be influenced by inertial effects that introduce additional failure of the material. This
may not be seen if the excavation is made gradually. The numerical solution scheme should be able
to accommodate different loading paths in order to apply the constitutive model properly.

A third characteristic is the nonlinearity of the stress-strain response. This includes the nonlinear
dependence of both the elastic stiffness and the strength envelope on the confining stress. This can
also include behavior after ultimate failure that changes character according to the stress level (e.g.,
different post-failure response in the tensile, unconfined and confined regimes). The numerical
scheme needs to be able to accommodate these various forms of nonlinearity.

The difficulties faced in numerical simulations in geomechanics – physical instability, path depen-
dence, and implementation of extremely nonlinear constitutive models – can all be addressed by
using the explicit, dynamic solution scheme provided in UDEC. This scheme allows the numerical
analysis to follow the evolution of a geologic system in a realistic manner, without concerns about
numerical instability problems. In the explicit, dynamic solution scheme, the full dynamic equa-
tions of motion are included in the formulation. By using this approach, the numerical solution is
stable even when the physical system being modeled is unstable. With nonlinear materials, there is
always the possibility of physical instability (e.g., the sudden collapse of a slope). In real life, some
of the strain energy in the system is converted into kinetic energy, which then radiates away from
the source and dissipates. The explicit, dynamic solution approach models this process directly,
because inertial terms are included – kinetic energy is generated and dissipated.

In contrast, schemes that do not include inertial terms must use some numerical procedure to treat
physical instabilities. Even if the procedure is successful at preventing numerical instability, the
path taken may not be a realistic one. The numerical scheme should not be viewed as a black
box that will give “the solution.” The way the system evolves physically can affect the solution.
The explicit, dynamic solution scheme can follow the physical path. By including the full law of
motion, this scheme can evaluate the effect of the loading path on the constitutive response.
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The explicit, dynamic solution scheme also allows the implementation of strongly nonlinear consti-
tutive models because the general calculation sequence allows the field quantities (forces/stresses
and velocities/displacements) at each element in the model to be physically isolated from one another
during one calculation step. The general calculation sequence of UDEC is described in Section 1.2.1
in Theory and Background. The implementation of elastic/plastic constitutive models within the
framework of this scheme is discussed in Section 1.3.

The constitutive models available in UDEC range from linearly elastic models to highly nonlinear
plastic models. The basic constitutive models are listed below. A short discussion of the theoretical
background and simple example tests for each model follow this listing.*

* The data files in this section are all created using a text editor, the built in test editor may be used.
The files are stored in a folder in user documents selected by the user following initial startup. The
files may also be found in the folder “ITASCA\UDEC700\datafiles\Models\BlockModel” with
the extension “.DAT.” A project file is also provided for each example. In order to run an example
and compare the results to plots in this section, open a project file in the GIIC or GUI by clicking
on the File / Open Project menu item and selecting the project file name (with extension “.PRJ”
for the GIIC or “.UDPRJ” for the GUI). In the GIIC Click on the Project Options icon at the top of
the Project Tree Record, select Rebuild unsaved states, and the example data file will be run, and
plots created. In the GUI, click on the green circle.
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1.2 Constitutive Models in UDEC

The constitutive models provided in UDEC Version 7.0 are arranged into null, elastic and plastic
model groups:

Null model group

(1) null model

A null material model is used to represent material that is removed or excavated.
(See Section 1.4.1.)

Elastic model group

(2) elastic, isotropic model

The elastic, isotropic model provides the simplest representation of material
behavior. This model is valid for homogeneous, isotropic, continuous materi-
als that exhibit linear stress-strain behavior with no hysteresis on unloading.
(See Section 1.5.1.)

(3) elastic, transversely isotropic model

The elastic, transversely isotropic model gives the ability to simulate layered
elastic media in which there are distinctly different elastic moduli in directions
normal and parallel to the layers. (See Section 1.5.2.)
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Plastic model group

(4) Drucker-Prager model

The Drucker-Prager plasticity model may be useful to model soft clays with
low friction angles. However, this model is not generally recommended for
application to geologic materials. It is included here mainly to permit com-
parison with other numerical program results. (See Section 1.6.1.)

(5) Mohr-Coulomb model

The Mohr-Coulomb model is the conventional model used to represent shear
failure in soils and rocks. Vermeer and deBorst (1984), for example, report
laboratory test results for sand and concrete that match well with the Mohr-
Coulomb criterion. (See Section 1.6.2.)

(6) ubiquitous-joint model

The ubiquitous-joint model is an anisotropic plasticity model that includes
weak planes of specific orientation embedded in a Mohr-Coulomb solid. (See
Section 1.6.3.)

(7) strain-softening model

The strain-softening model allows representation of nonlinear material soft-
ening and hardening behavior based on prescribed variations of the Mohr-
Coulomb model properties (cohesion, friction, dilation and tensile strength)
as functions of the deviatoric plastic strain. (See Section 1.6.4.)

(8) softening-ubiquitous-joint model

The bilinear strain-hardening/softening ubiquitous-joint model allows repre-
sentation of material softening and hardening behavior for the matrix and
the weak plane based on prescribed variations of the ubiquitous-joint model
properties (cohesion, friction, dilation and tensile strength) as functions of de-
viatoric and tensile plastic strain. The variation of material strength properties
with mean stress can also be taken into account by using the bilinear option.
(See Section 1.6.5.)

(9) double-yield model

The double-yield model is intended to represent materials in which there may
be significant irreversible compaction in addition to shear yielding, such as
hydraulically placed backfill or lightly cemented granular material. (See Sec-
tion 1.6.6.)
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(10) modified Cam-clay model

The modified Cam-clay model may be used to represent materials when the
influence of volume change on bulk property and resistance to shear need to
be taken into consideration, as in the case of soft clay. (See Section 1.6.7.)

(11) Hoek-Brown-PAC model

The Hoek-Brown failure criterion characterizes the stress conditions that lead
to failure in intact rock and rock masses. The failure surface is nonlinear,
and is based on the relation between the major and minor principal stresses.
The model incorporates a plasticity flow rule that varies as a function of the
confining stress level. (See Section 1.6.8.)

(12) Hoek-Brown model

The Hoek-Brown model provides an alternative to the Hoek-Brown-PAC
model with a stress-dependent plastic flow rule, described above. The model
characterizes post-failure plastic flow by simple flow rule choices given in
terms of a user-specified dilation angle. This model also contains a tensile
strength limit similar to that used by the Mohr-Coulomb model. In addition, a
factor-of-safety calculation based on the shear-strength reduction method can
be run with the Hoek-Brown model. (See Section 1.6.9.)

(13) cap-yield model

The cap-yield soil model provides a comprehensive representation of the non-
linear behavior of soils. The model includes frictional strain-hardening and
softening shear behavior, an elliptic volumetric cap with strain-hardening be-
havior, and an elastic modulus function of plastic volumetric strain. The model
allows a more realistic representation of the loading/unloading response of
soils. (See Section 1.6.10.)

(14) cap-yield-simplified model

A simplified version of the cap-yield model offers built-in features including a
friction-hardening law that uses hyperbolic model parameters as direct input,
and a Mohr-Coulomb failure envelope with two built-in dilation laws. (See
Section 1.6.11.)

There are also several time-dependent (creep) material models available in the creep model option
for UDEC (see Section 1 in Creep Material Models).

Input parameters to all of these built-in models can be controlled via FISH to modify the behavior
of the models.

In addition, the C++ source codes for all of the models are provided in the directory folder
“\UDEC700\PLUGINFILES\MODELS.” Users can modify these models or create their own con-
stitutive models as dynamic link libraries (DLLs) by following the procedures given in writing new
constitutive models in Section 4.
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1.3 Incremental Formulation

All constitutive models share the same incremental numerical algorithm. Given the stress state at
time, t , and the total strain increment for the current timestep, �t , the purpose is to determine the
corresponding stress increment and the new stress state at time t +�t . When plastic deformations
are involved, only the elastic part of the strain increment will contribute to the stress increment. In
this case, a correction must be made to the elastic stress increment as computed from the total strain
increment, in order to obtain the actual stress state at the new timestep.

Note that all models operate on effective stresses only; pore pressures are used to convert total
stresses to effective stresses before the constitutive model is called. The reverse process occurs
after the model calculations are complete.

1.3.1 Incremental Equations of the Theory of Plastic Flow

In order to describe the implementation of elastic/plastic constitutive laws in the framework of the
explicit dynamic-solution scheme, we consider the implementation algorithm for the case when
the incremental elastic stress-strain relations are linear functions of strain increment, and the yield
relation is a linear function of the generalized stress components.

We note that all stress increments described in this section are corotational stress increments. The
stresses at time t +�t are computed as “new stress values.” However, in large-strain mode, these
values must be incremented by the stress-rotation correction.

The description of plastic flow rests on several relations:

(1) the failure criterion

f (σn) = 0 (1.1)

where f , the yield function, is a known function that specifies the limiting stress com-
bination for which plastic flow takes place. (This function is represented by a surface in
the generalized stress space, and all stress points below the surface are characterized by
elastic behavior.) [σ ] is the generalized stress vector of dimension n with components
σ i , i = 1, n.

(2) the relation expressing the decomposition of strain increments into the sum of elastic and
plastic parts

�εi = �εei + ε
p
i (1.2)

�[ε] is the generalized strain-increment vector with components �εi , i = 1, n.
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(3) the elastic relations between elastic strain increments and stress increments

�σi = Si(�ε
e
n) i=1,n (1.3)

where Si is a linear function of the elastic strain increments, �εen.

(4) the flow rule specifying the direction of the plastic-strain increment vector as that normal
to the potential surface g(σn) = constant

�ε
p
i = λ

∂g

∂σ i
(1.4)

where λ is a constant. (The flow rule is said to be associated if g ≡ f , and nonassociated
otherwise.)

(5) the requirement for the new stress-vector components to satisfy the yield function

f (σn +�σn) = 0 (1.5)

This equation provides a relation for evaluation of the magnitude of the plastic-strain
increment vector.

Substitution of the expression for the elastic-strain increment derived from Eq. (1.2) into the elastic
relation Eq. (1.3) yields, taking into consideration the linear property of the function Si ,

�σi = Si(�εn)− Si(�ε
p
n ) (1.6)

In further expressing the plastic strain increment by means of the flow rule Eq. (1.4), this equation
becomes

�σi = Si(�εn)− λSi

(
∂g

∂σn

)
(1.7)

where use has been made of the linear property of Si .

In the special case where f (σn) is a linear function of the components σ i , i = 1, n, Eq. (1.5) may
be expressed as

f (σn)+ f ∗(�σn) = 0 (1.8)

where, as a notation convention, f ∗ represents the function f minus its constant term,
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f ∗(.) = f (.)− f (0n) (1.9)

For a stress point σn on the yield surface, f (σn) = 0, and Eq. (1.8) becomes, after substitution of
the expression Eq. (1.7) for the stress increment, and further using the linear property of f ∗,

f ∗ [
Sn(�εn)

] − λf ∗
[
Sn

(
∂g

∂σn

)]
= 0 (1.10)

We now define new stress components σ i
N and elastic guesses σ Ii as

σNi = σ i +�σi (1.11)

σ Ii = σ i + Si(�εn) (1.12)

Note that the term Si(�εn) in Eq. (1.12) is the component i of the stress increment induced by the
total-strain increment �εn, in case no increment of plastic deformation takes place. This justifies
the name of “elastic guess” for σ Ii .

From the definition Eq. (1.12), it follows, using the same arguments as above, that

f (σ In) = f ∗ [
Sn(�εn)

]
(1.13)

Hence, an expression for λ may be derived from Eqs. (1.9), (1.10) and (1.13):

λ = f (σ In)

f
[
Sn(∂g/∂σn)

] − f (0n)
(1.14)

Using the expression of the stress increment Eq. (1.7), and the definition of the elastic guess
Eq. (1.12), the new stress may be expressed from Eq. (1.11) as

σNi = σ Ii − λSi

(
∂g

∂σn

)
(1.15)

For clarity, recall that, in these last two expressions, Si(∂g/∂σn) is the stress increment obtained
from the incremental elastic law, where ∂g/∂σ i is substituted for �εi , i = 1, n.
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1.3.2 Implementation

An elastic guess σ Ii , i = 1, n for the stress state at time t + �t is first evaluated by adding to
the stress components at time, t , increments computed from the total-strain increment for the step,
using an incremental elastic stress-strain law (see Eq. (1.12)). If the elastic guess violates the yield
function, Eq. (1.15) is used to place the new stress exactly on the yield curve. Otherwise, the elastic
guess gives the new stress state at time t +�t .

If the stress point σ Ii , i = 1, n is located above the yield surface in the generalized stress space, the
coefficient λ in Eq. (1.15) is given by Eq. (1.14), provided the yield function is a linear function of
the generalized stress vector components. Eq. (1.15) is still valid, but λ is set to zero in case σ Ii , i
= 1, n is located below the yield surface (elastic loading or unloading).

The implementation of each of the constitutive models is described separately in the following
sections. All models except the null and elastic models potentially involve plastic deformations.
Note that a wide range of material behavior may be obtained from these fourteen models by assigning
appropriate values to the model parameters.
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1.4 Null Model Group

1.4.1 Null Model

The stresses within null blocks (block change model = 0) or null zones (block zone cmodel assign null)
are are not transfered to adjacent blocks. The null material may be changed to a different material
model at a later stage of the simulation. In this way, backfilling an excavation, for example, can be
simulated. It is not allowed to mix null zones with other models within a single block. Any number
of null zones in a block will mark that block as null. To prevent collapse of the null zones under
gravity and to allow the null zones to displace evenly in response to displacement of the opening,
material properties must be assigned to the null zones. The recomended properties are the same as
for other blocks.

1.4.1.1 block zone cmodel Command and Property Keywords

null – block zone cmodel assign null

(1) bulk elastic bulk modulus, K
(2) density material density, ρ
(3) shear elastic shear modulus, G
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1.5 Elastic Model Group

The models in this group are characterized by reversible deformations upon unloading; the stress-
strain laws are linear and path-independent.

1.5.1 Elastic, Isotropic Model

In this model, the relation of stress to strain in incremental form is expressed by Hooke’s law in
plane strain as

�σ11 = α1 �e11 + α2 �e22

�σ22 = α2 �e11 + α1 �e22 (1.16)

�σ12 = 2G �e12 (�σ21 = �σ12)

�σ33 = α2 (�e11 +�e22)

where α1 = K + (4/3)G;
α2 = K − (2/3)G;
K = bulk modulus; and
G = shear modulus.

�eij = 1

2

[
∂u̇i

∂xj
+ ∂u̇j

∂xi

]
�t (1.17)

where �eij = incremental strain tensor;
u̇i = displacement rate; and
�t = timestep.

In plane stress, these equations become

�σ11 = β1 �e11 + β2 �e22

�σ22 = β2 �e11 + β1 �e22 (1.18)

�σ12 = 2G �e12 (�σ21 = �σ12)

�σ33 = 0

where β1 = α1 − (α2
2/α1); and

β2 = α2 − (α2
2/α1).
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For axisymmetric geometry:

�σ11 = α1 �e11 + α2 (�e22 +�e33)

�σ22 = α1 �e22 + α2 (�e11 +�e33) (1.19)

�σ12 = 2G �e12 (�σ21 = �σ12)

�σ33 = α1 �e33 + α2 (�e11 +�e22)

1.5.1.1 block zone cmodel Command and Property Keywords

Isotropic Elastic – block zone cmodel assign elastic

(1) bulk elastic bulk modulus, K
(2) density material density, ρ
(3) shear elastic shear modulus, G
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1.5.2 Elastic, Transversely Isotropic Model

A transversely isotropic body has a plane of elastic symmetry (and all directions in such a plane are
elastically equivalent) at each point, and these planes are parallel at all points. The model deforms
as a two-dimensional slice of a transversely isotropic elastic material subjected to plane-strain or
plane-stress boundary conditions in the global xy plane, and oriented such that the global z-axis is
parallel with the planes of isotropy (see Figure 1.1).

Figure 1.1 Transverse isotropy coordinate axes convention
(x1x3-axes are in the plane of isotropy)

There are five independent constants in the elastic, transversely isotropic model. The constants are
specified in terms of an orthogonal material coordinate system, x1, x2, x3, in which the x2 axis is
normal to a plane of symmetry, with the x1 and x3 axes directed arbitrarily in this plane. The material
coordinate system is oriented by specifying the angle φ (measured positive counterclockwise from
the global x-axis) and noting that the x3 axis is parallel with the global z-axis (see Figure 1.1).
A bedded material can be well approximated as a transversely isotropic body with the x1x3 plane
coinciding with the bedding plane.

There are five elastic constants:

E1 modulus of elasticity in plane of isotropy

E2 modulus of elasticity in plane perpendicular to plane of isotropy

G12 cross-shear modulus between plane of isotropy and perpendicular
plane (i.e., x1x2- or x2x3-plane)
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ν21 Poisson’s ratio for the normal strain in the x1-direction (in the plane
of isotropy) related to the normal strain in the x2-direction (in the
perpendicular plane) due to uniaxial stress in the x2-direction

ν31 Poisson’s ratio for the normal strain in the x1-direction (in the plane
of isotropy) related to the normal strain in the x3-direction due to
uniaxial stress in the x3-direction

For a transversely isotropic body whose plane of isotropy lies within the x1x3-plane, the following
relations apply.

E3 = E1

ν31 = ν13

ν23 = ν21

G23 = G12

G13 = E1

2(1 + ν31)

ν12 = ν21
E1

E2

There are limitations on the variations in elastic properties (Amadei 1982). The following restric-
tions apply.

E1 > 0

E2 > 0

G12 > 0 (1.20)

ν2
12 ≤ 1

ν2
13 ≤ 1

(1 − ν13)− 2 E1 ν
2
21

E2
≥ 0
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The stress-strain equations are given by Lekhnitskii (1981, p. 34) for a general orthotropic body.
When written in terms of the global x, y, z coordinate system, the equations are

�exx = S11 �σxx + S12 �σyy + S13 �σzz + S16 �σxy

�eyy = S12 �σxx + S22 �σzz + S23 �σzz + S26 �σxy

�ezz = S13 �σxy + S23 �σyy + S33 �σzz + S36 �σxy (1.21)

�eyz = 1

2

[
(S44 �σyz) + (S45 �σxz)

]

�exz = 1

2

[
(S45 �σyz) + (S55 �σxz)

]

�exy = 1

2

[
(S16 �σxx) + (S26 �σyy) + (S36 �σzz) + (S66 �σxy)

]

where

S11 = cos4 φ

E1
+ (

1

G12
− 2ν12

E1
) sin2 φ cos2 φ + sin4 φ

E2

S22 = sin4 φ

E1
+ (

1

G12
− 2ν12

E1
) sin2 φ cos2 φ + cos4 φ

E2

S12 = (
1

E1
+ 1

E2
+ 2ν12

E1
− 1

G12
) sin2 φ cos2 φ − ν12

E1

S13 = −(ν23

E2
) sin2 φ − (

ν13

E1
) cos2 φ

S23 = −(ν23

E2
) cos2 φ − (

ν13

E1
) sin2 φ

S33 = 1

E3

S44 = cos2 φ

G23
+ sin2 φ

G13
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S45 = (
1

G23
− 1

G13
) sin φ cosφ

S55 = sin2 φ

G23
+ cos2 φ

G13

S16 = −
[

2(
sin2 φ

E2
− cos2 φ

E1
) + (

1

G12
− 2ν12

E1
) (cos2 φ − sin2 φ)

]
sin φ cosφ

S26 = −
[

2(
cos2 φ

E2
− sin2 φ

E1
) − (

1

G12
− 2ν12

E1
) (cos2 φ − sin2 φ)

]
sin φ cosφ

S36 = −2(
ν13

E1
− ν23

E2
) sin φ cosφ

S66 = 4 (
1

E1
+ 1

E2
+ 2ν12

E1
− 1

G12
) sin2 φ cos2 φ + 1

G12

φ = angle of anisotropy measured counterclockwise from the x-axis (see Figure 1.1).

A state of plane stress with respect to the xy-plane is obtained by setting

�σzz = �σxz = �σyz = 0

in Eq. (1.21). This gives

�exx = S11 �σxx + S12 �σyy + S16 �σxy

�eyy = S12 �σxx + S22 �σyy + S26 �σxy (1.22)

�exy = 1

2
(S16 �σxx + S26 �σyy + S66 �σxy)

which can be written as

[
�exx
�eyy

2�exy

]
=

[
s11 s12 s16
s12 s22 s26
s16 s26 s66

] [
�σxx
�σyy
�σxy

]
(1.23)
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The stress-strain relations can easily be found by inverting the matrix.

A state of plane strain in the xy-plane is obtained from Eq. (1.21) by setting

�ezz = �exz = �eyz = 0

This results in

�exx = s11�σxx + s12�σyy + s13�σzz + s16�σxy

�eyy = s12�σxx + s22�σyy + s23�σzz + s26�σxy

0 = sxz�σxx + s23�σyy + s33�σzz + s36�σxy

0 = s44�σyz + s45�σxz (1.24)

0 = s55�σxz + s45�σyz

�exy = 1

2
(s16�σxx + s26�σyy + s36�σzz + s66�σxy)

which can be written as

⎡
⎢⎣
�exx
�eyy

0
2�exy

⎤
⎥⎦ =

⎡
⎢⎣
s11 s12 s13 s16
s12 s22 s23 s26
s13 s23 s33 s36
s16 s26 s36 s66

⎤
⎥⎦

⎡
⎢⎣
�σxx
�σyy
�σzz
�σxy

⎤
⎥⎦ (1.25)

The stress-strain relations can be obtained by inverting the matrix.
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1.5.2.1 block zone cmodel Command and Property Keywords

Transversely Isotropic Elastic – block zone cmodel assign anisotropic

(1) angle angle of anisotropy, taken counterclockwise from the x-axis, φ
(2) density mass density, ρ
(3) young-plane elastic Young’s modulus in the plane of isotropy, E1

(4) young-normal elastic Young’s modulus in the plane perpendicular to the plane of
isotropy, E2

(5) poisson-plane Poisson’s ratio for the normal strain in the x1-direction (in the plane of
isotropy) related to the normal strain in the x2-direction (in the
perpendicular plane) due to uniaxial stress in the x2-direction, ν21

(6) poisson-normal Poisson’s ratio for the normal strain in the x1-direction (in the plane of
isotropy) related to the normal strain in the x3-direction due to uniaxial
stress in the x3-direction, ν31

(7) shearV-normal elastic cross-shear modulus between plane of isotropy and perpendicular
plane (i.e., x1x2- or x2x3-plane), G12

∗

* The cross-shear modulus, shear-normal, for anisotropic elasticity must be determined. Lekhnittskii
(1981) suggests the following equation based on laboratory testing of rock.

shear − normal = E1E2

E1(1 + 2ν12)+ E2

assuming the x1x3-plane is the plane of isotropy.
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1.6 Plastic Model Group

All plastic models potentially involve some degree of permanent, path-dependent deformation
(failure) – a consequence of the nonlinearity of the stress-strain relations. The different models
are characterized by their yield function, hardening/softening functions and plastic flow. These
functions or criteria are represented by one or more limiting surfaces in a generalized stress space
with points below or on the surface being characterized by an incremental elastic or plastic behavior,
respectively. The plastic flow formulation rests on basic assumptions from plasticity theory that the
total strain increment may be decomposed into elastic and plastic parts, with only the elastic part
contributing to the stress increment by means of an elastic law. In addition, both plastic and elastic
strain increments are taken to be coaxial with the current principal axes of the stresses. (This is
only valid if elastic strains are small compared to plastic strains during plastic flow.) The flow rule
specifies the direction of the plastic strain increment vector as that normal to the potential surface;
it is called associated if the potential and yield functions coincide, and nonassociated otherwise.
A detailed description of the plastic flow calculation is given in Section 1.3.1. See Vermeer and
deBorst (1984) for further discussion on the theory of plasticity.

For Drucker-Prager, Mohr-Coulomb, ubiquitous-joint, strain-softening and softening-ubiquitous
models, a shear yield function and a nonassociated shear flow rule are used. For the double-yield
and cap-yield models, shear and volumetric yield functions, nonassociated shear flow and associated
volumetric flow rules are included. The simplified cap-yield model is a version of the cap-yield
model that provides built-in friction hardening and dilation hardening/softening laws, and does
not include a volumetric cap. In addition, the failure envelope for each of the above models is
characterized by a tensile yield function with associated flow rule.

The modified Cam-clay model formulation rests on a combined shear and volumetric yield function
and associated flow rule.

The two types of Hoek-Brown model provide different formulations to represent yielding. For
the Hoek-Brown model, plastic flow is handled in a manner similar to that in the Mohr-Coulomb
model, in which a dilation angle is specified. Also, a tensile yield function similar to that used with
the Mohr-Coulomb model is included with the Hoek-Brown model. The Hoek-Brown-PAC model
uses a nonlinear shear-yield function and a plasticity flow rule that varies as a function of the stress
level.

The out-of-plane stress is taken into consideration in the formulation that is expressed in three-
dimensional terms. All models are based on plane-strain conditions, with the exception of the
strain-softening model, which is also available in a plane-stress option. Also note that all plasticity
models are formulated in terms of effective stresses, not total stresses.

The plasticity models can produce localization (i.e., the development of families of discontinuities
such as shear bands in a material that starts as a continuum). Note that localization is grid-dependent
since there is no intrinsic length scale incorporated in the formulations. This is an important
consideration when creating a grid for a plasticity analysis.

As discussed in Section 1.3.2, in the numerical implementation of the models, an elastic trial (or
elastic guess) for the stress increment is first computed from the total strain increment using the
incremental form of Hooke’s law. The corresponding stresses are then evaluated. If they violate
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the yield criteria (i.e., the stress point representation lies above the yield function in the generalized
stress space), plastic deformations take place. In this case, only the elastic part of the strain increment
can contribute to the stress increment; the latter is corrected by using the plastic flow rule to ensure
that the stresses lie on the composite yield function. This section describes the yield and potential
functions, flow rules and stress corrections for the different plasticity models.
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1.6.1 Drucker-Prager Model

The failure envelope for this model consists of a Drucker-Prager criterion with tension cutoff. The
shear flow rule is nonassociated, and the tensile flow rule is associated. For a detailed description
of the model, see Chen and Han (1988), for example.

1.6.1.1 Incremental Elastic Law

The Drucker-Prager model is expressed in terms of two generalized stress components: the tangen-
tial stress, τ , and mean normal stress, σ , defined as

τ = √
J2

σ = 1

3
(σ11 + σ22 + σ33) (1.26)

where J2 is the second invariant of the stress deviator tensor. This quantity may be expressed as

J2 = 1

6

[
(σ11 − σ22)

2 + (σ22 − σ33)
2 + (σ11 − σ33)

2] + σ12
2 (1.27)

The shear strain increment,�γ , and volumetric strain increment,�e, associated with τ and σ have
the form

�γ = 2
√
�J ′

2

�e = �e11 +�e22 +�e33 (1.28)

where �J ′
2, the second invariant of the incremental strain deviator tensor, is given by

�J ′
2 = 1

6

[
(�e11 −�e22)

2 + (�e22 −�e33)
2 + (�e11 −�e33)

2] +�e12
2 (1.29)

The strain increments are decomposed:

�γ = �γ e +�γp

�e = �ee +�ep (1.30)
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where the superscripts e and p refer to elastic and plastic parts, respectively, and the plastic com-
ponents are nonzero during plastic flow only. The incremental expression of Hooke’s law in terms
of generalized stresses and strains is

�τ = G�γ e

�σ = K�ee (1.31)

where G and K are the shear and bulk modulus, respectively.

1.6.1.2 Yield and Potential Functions

The representation of the failure criterion in the (σ, τ ) plane is sketched in Figure 1.2. The failure
envelope is defined from point A to B by the Drucker-Prager yield function,

f s = τ + qφσ − kφ (1.32)

and from B to C by the tension yield function,

f t = σ − σ t (1.33)

where qφ and kφ are constant material properties, and σ t is the tensile strength for the Drucker-
Prager model. Note that this strength is defined as the maximum value of the mean normal stress
for the material under consideration. For a material whose property qφ is not equal to zero, the
tensile strength cannot exceed the value σ tmax given by

σ tmax = kφ

qφ
(1.34)
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Figure 1.2 Drucker-Prager failure criterion in UDEC

The shear potential function gs corresponds in general to a nonassociated flow rule, and has the
form

gs = τ + qψσ (1.35)

where qψ is a material constant equal to qφ if the flow rule is associated.

The flow rule for tensile failure is associated. It is derived from the potential function gt given by

gt = σ (1.36)

The flow rules are given a unique definition in the vicinity of an edge of the composite yield function
by application of the following technique. A function, h(σ, τ ) = 0, which is represented by the
diagonal between the representation of f s = 0 and f t = 0 in the (σ, τ ) plane, is defined (see
Figure 1.3). This function may be written as

h = τ − τP − αP (σ − σ t ) (1.37)

where τP and αP are two constants defined as

τP = kφ − qφσ
t

αP =
√

1 + qφ2 − qφ (1.38)
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Figure 1.3 Drucker-Prager model: domains used in the definition of the flow
rule

An elastic guess violating the failure criterion is represented by a point in the (σ, τ ) plane, located
either in domain 1 or 2, corresponding to positive or negative domains of h = 0, respectively. If in
domain 1, shear failure is declared, and the stress point is brought back to the curve f s = 0 using
a flow rule derived using the potential function gs . If in domain 2, tensile failure takes place, and
the stress point is brought back to f t = 0 using a flow rule derived using gt . Further comments on
this technique may be found in the Mohr-Coulomb model section.

1.6.1.3 Plastic Corrections

First consider shear failure. The flow rule has the form

�γp = λs
∂gs

∂τ

�ep = λs
∂gs

∂σ
(1.39)

where the magnitude of the parameter λs remains to be defined. Using Eq. (1.35) for gs , these
expressions give, after partial differentiation,
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�γp = λs

�ep = λsqψ (1.40)

The elastic strain increments may be expressed from Eq. (1.30) as total increments minus plastic
increments. In further using Eq. (1.40), the elastic laws in Eq. (1.31) may be expressed:

�τ = G�γ −Gλs

�σ = K�e −Kqψλ
s (1.41)

Let the new and old stress states be referred to by the superscripts N and O , respectively. Then, by
definition:

τN = τO +�τ

σN = σO +�σ (1.42)

Substitution of Eq. (1.41) gives

τN = τ I −Gλs

σN = σ I −Kqψλ
s (1.43)

where the superscript I is used to represent the elastic guess obtained, by adding to the old stresses,
elastic increments computed using the total strain increments – i.e.,

τ I = τO +G�γ

σI = σO +K�e (1.44)

The parameter λs may now be defined by requiring that the new stress point be located on the shear
yield surface. Substitution of τN and σN for τ and σ in f s = 0 gives, after some manipulations
(see Eqs. (1.32) and (1.43)),

λs = f s(σ I , τ I )

G+Kqφqψ
(1.45)
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Noting that the new deviatoric stresses may be obtained by multiplying the corresponding deviatoric
elastic guesses with the ratio τN/τ I , the new stresses may be written as

σNij = (σ Iij − σ I δij )
τN

τ I
+ σNδij (1.46)

where δij is the Kronecker delta symbol.

We now consider tensile failure. The flow rule has the form

�γp = λt
∂gt

∂τ

�ep = λt
∂gt

∂σ
(1.47)

where the magnitude of the parameter λt must be determined. Using the Eq. (1.36) for gt , these
expressions give, after partial differentiation,

�γp = 0
�ep = λt (1.48)

Applying a reasoning similar to that described above, we obtain

τN = τ I

σN = σ I −Kλt (1.49)

and

λt = σ I − σ t

K
(1.50)

As expected, substitution of this expression in Eq. (1.49) yields

τN = τ I

σN = σ t (1.51)

In this mode of failure, the new deviatoric stresses correspond to the elastic guess and we may write

σNij = σ Iij + (σ t − σ I )δij (1.52)
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1.6.1.4 Implementation Procedure

In the implementation of the Drucker-Prager model in UDEC, an elastic guess σ Iij is first computed,
by adding to the old stress components, increments calculated by application of Hooke’s law to the
total strain increment for the step. The generalized stress components (σ I , τ I ) are then derived
from σ Iij using Eqs. (1.26) and (1.27).

If these stresses violate the composite yield criterion, a correction must be applied to the generalized
stress components to give the new stress state. In this situation, we have that either h(σ I , τ I ) > 0
or h(σ I , τ I ) ≤ 0 (see Eq. (1.37)). In the first case, shear failure is declared. New, generalized
stresses are evaluated from Eq. (1.43) using Eq. (1.45) for λs . In the second case, tensile failure
takes place and new stresses are calculated from Eq. (1.51). The stress tensor components in the
system of reference axes are then calculated from the generalized stresses, using Eq. (1.46) in the
case of shear failure, and Eq. (1.52) when tensile failure takes place.

In UDEC, the default value for the tensile strength is zero if the material property qφ is zero, and is
σ tmax otherwise (see Eq. (1.34)). This last value is also retained if the value assigned to the tensile
strength exceeds σ tmax . There is no tensile softening in this model.

1.6.1.5 Note on Material Parameters

The Drucker-Prager shear criterion f s = 0 is represented in the principal stress space (σ1, σ2, σ3)
by a cone with axis along σ1 = σ2 = σ3, and apex at (σ1, σ2, σ3) = (a, a, a) with a = kφ/qφ
(see Figure 1.4). The Mohr-Coulomb shear criterion, characterized by cohesion, c, and friction
angle, φ, is represented there by an irregular hexagonal pyramid with the same axis, three “outer”
and three “inner” edges (see Figure 1.5). The parameters qφ and kφ can be adjusted so that the
Drucker-Prager cone will either pass through the outer or the inner edges of the Mohr-Coulomb
pyramid. For the outer adjustment, we have

qφ = 6√
3(3 − sin φ)

sin φ

kφ = 6√
3(3 − sin φ)

c cosφ (1.53)

and for the inner adjustment, we have

qφ = 6√
3(3 + sin φ)

sin φ

kφ = 6√
3(3 + sin φ)

c cosφ (1.54)
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In the special case qφ = 0, the Drucker-Prager criterion degenerates into the von Mises criterion,
which corresponds to a cylinder in the principal stress space. The Tresca criterion is a special case
of the Mohr-Coulomb criterion for which φ = 0. It is represented in the principal stress space by
a regular hexagonal prism. The von Mises cylinder circumscribes the prism for

qφ = 0

kφ = 2√
3
c (1.55)

σ 1

σ 3σ 2 =
=

k φ
qφ

3
Von Mises

Drucker-Prager qφ > 0

qφ = 0

σ2-

σ3-

σ1-

Figure 1.4 Drucker-Prager and von Mises yield surfaces in principal stress
space

σ 1

σ 3σ 2 =
=

σ2-

σ3-

σ1-

Mohr-Coulomb  φ > 0

Tresca  φ = 0φ
C cot 

3

Figure 1.5 Mohr-Coulomb and Tresca yield surfaces in principal stress
space
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1.6.1.6 block zone cmodel Command and Property Keywords

Drucker-Prager – block zone cmodel assign drucker-prager

(1) bulk elastic bulk modulus, K
(2) cohesion-drucker material parameter, kφ
(3) density mass density, ρ
(4) dilation-drucker material parameter, qψ
(5) friction-drucker material parameter, qφ
(6) shear elastic shear modulus, G
(7) tension tension limit, σ t

Note that the default tension limit is zero for a material with qφ = 0, and is kφ/qφ otherwise. The
value assigned for the tension limit remains constant when tensile failure occurs.
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1.6.2 Mohr-Coulomb Model

The failure envelope for this model corresponds to a Mohr-Coulomb criterion (shear yield function)
with tension cutoff (tensile yield function). The shear flow rule is nonassociated, and the tensile
flow rule is associated.

1.6.2.1 Incremental Elastic Law

In the implementation of this model, principal stresses σ1, σ2, σ3 are used, the out-of-plane stress,
σzz, being recognized as one of these. The principal stresses and principal directions are evaluated
from the stress tensor components, and ordered so that (recall that compressive stresses are negative)

σ1 ≤ σ2 ≤ σ3 (1.56)

The corresponding principal strain increments �e1, �e2, �e3 are decomposed:

�ei = �eei +�e
p
i i = 1, 3 (1.57)

where the superscripts e and p refer to elastic and plastic parts, respectively, and the plastic com-
ponents are nonzero only during plastic flow. The incremental expression of Hooke’s law in terms
of principal stress and strain has the form

�σ1 = α1�e
e
1 + α2(�e

e
2 +�ee3)

�σ2 = α1�e
e
2 + α2(�e

e
1 +�ee3) (1.58)

�σ3 = α1�e
e
3 + α2(�e

e
1 +�ee2)

where α1 = K + 4G/3 and α2 = K − 2G/3.
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1.6.2.2 Yield and Potential Functions

With the ordering convention of Eq. (1.56), the failure criterion may be represented in the plane
(σ1, σ3) as illustrated in Figure 1.6.

+
-

B C

A

Figure 1.6 Mohr-Coulomb failure criterion

The failure envelope is defined from point A to point B by the Mohr-Coulomb yield function,

f s = σ1 − σ3Nφ + 2c
√
Nφ (1.59)

and from B to C by a tension yield function of the form

f t = σ t − σ3 (1.60)

where φ is the friction angle, c is the cohesion, σ t is the tensile strength and

Nφ = 1 + sin φ

1 − sin φ
(1.61)
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Note that only the major and minor principal stresses are active in the shear yield formulation;
the intermediate principal stress has no effect. For a material with friction, φ �= 0 and the tensile
strength of the material cannot exceed the value σ tmax given by

σ tmax = c

tan φ
(1.62)

The shear potential function, gs , corresponds to a nonassociated flow rule and has the form

gs = σ1 − σ3Nψ (1.63)

where ψ is the dilation angle and

Nψ = 1 + sinψ

1 − sinψ
(1.64)

The associated flow rule for tensile failure is derived from the potential function gt , with

gt = −σ3 (1.65)

The flow rules for this model are given a unique definition in the vicinity of an edge of the composite
yield function in three-dimensional stress space by application of a technique (illustrated below) for
the case of a shear-tension edge. A function, h(σ1, σ3) = 0, which is represented by the diagonal
between the representation of f s = 0 and f t = 0 in the (σ1, σ3) plane, is defined (see Figure 1.7).
This function has the form

h = σ3 − σ t + αP (σ1 − σP ) (1.66)

where αP and σP are constants defined as

αP =
√

1 +N2
φ +Nφ (1.67)

and

σP = σ tNφ − 2c
√
Nφ (1.68)
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Figure 1.7 Mohr-Coulomb model: domains used in the definition of the flow
rule

An elastic guess violating the failure criterion is represented by a point in the (σ1, σ3) plane, located
either in domain 1 or 2, corresponding to negative or positive domains of h = 0, respectively. If in
domain 1, shear failure is declared, and the stress point is brought back to the curve f s = 0 using
a flow rule derived using the potential function gs . If in domain 2, tensile failure takes place, and
the stress point is brought back to f t = 0 using a flow rule derived using gt .

Note that, by ordering the stresses as in Eq. (1.56), the case of a shear-shear edge is automatically
handled by a variation on this technique. The technique, applicable for small-strain increments,
is simple to implement: at each step, only one flow rule and corresponding stress correction is
involved in the calculation of plastic flow. In particular, when a stress point follows an edge, it
receives stress corrections alternating between two criteria. In this process, the two yield criteria
are fulfilled to an accuracy that depends on the magnitude of the strain increment. As a validation
of this approach, results obtained for the oedometric test are presented in Section 1.6.2.5.
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1.6.2.3 Plastic Corrections

First consider shear failure. The flow rule has the form

�e
p
i = λs

∂gs

∂σi
i = 1, 3 (1.69)

where λs is a parameter of magnitude as yet unknown. Using Eq. (1.63) for gs , these equations
become, after partial differentiation,

�e
p

1 = λs

�e
p

2 = 0 (1.70)

�e
p

3 = −λsNψ

The elastic strain increments may be expressed from Eq. (1.57) as total increments minus plastic
increments. In further using the flow rule above (Eq. (1.70)), the elastic laws in Eq. (1.58) become

�σ1 = α1�e1 + α2(�e2 +�e3)− λs(α1 − α2Nψ)

�σ2 = α1�e2 + α2(�e1 +�e3)− λsα2(1 −Nψ) (1.71)
�σ3 = α1�e3 + α2(�e1 +�e2)− λs(−α1Nψ + α2)

Let the new and old stress states be referred to by the superscripts N and O , respectively. Then, by
definition,

σNi = σOi +�σi i = 1, 3 (1.72)

Substituting Eq. (1.71) for �σi , i = 1, 3 in these equations, we may write

σN1 = σ I1 − λs(α1 − α2Nψ)

σN2 = σ I2 − λsα2(1 −Nψ) (1.73)

σN3 = σ I3 − λs(−α1Nψ + α2)

where the superscript I is used to represent the elastic guess, obtained by adding to the old stresses
elastic increments computed using the total strain increments – i.e.,
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σ I1 = σO1 + α1�e1 + α2(�e2 +�e3)

σ I2 = σO2 + α1�e2 + α2(�e1 +�e3) (1.74)

σ I3 = σO3 + α1�e3 + α2(�e1 +�e2)

The parameter λs may now be defined by requiring that the new stress point be located on the shear
yield surface. Substitution of σN1 and σN3 for σ1 and σ3 in f s = 0 gives, after some manipulations
(see Eqs. (1.59) and (1.73)),

λs = f s(σ I1 , σ
I
3 )

(α1 − α2Nψ)− (α2 − α1Nψ)Nφ
(1.75)

In the case of tensile failure, the flow rule has the form

�e
p
i = λt

∂gt

∂σi
i = 1, 3 (1.76)

where the magnitude of the parameter λt is not yet defined. Using Eq. (1.65) for gt , this expression
gives, after partial differentiation,

�e
p

1 = 0

�e
p

2 = 0 (1.77)

�e
p

3 = −λt

Repeating a reasoning similar to that described above, we obtain

σN1 = σ I1 + λtα2

σN2 = σ I2 + λtα2 (1.78)

σN3 = σ I3 + λtα1

and

λt = f t (σ I3 )

α1
(1.79)
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1.6.2.4 Implementation Procedure

In the implementation of the Mohr-Coulomb model in UDEC, an elastic guess σ Iij is first computed,
by adding to the old stress components, increments calculated by application of Hooke’s law to
the total strain increment for the step. Principal stresses σ I1 , σ I2 , σ I3 and corresponding principal
directions are calculated and ordered. If these stresses violate the composite yield criterion, a
correction must be applied to the elastic guess to give the new stress state. In this situation we
have that either h(σ I1 , σ

I
3 ) ≤ 0 or h(σ I1 , σ

I
3 ) > 0 (see Eq. (1.66)). In the first case, shear failure

is declared. New stresses are evaluated from Eq. (1.73) using Eq. (1.75) for λs . In the second
case, tensile failure takes place, and new stresses are calculated from Eq. (1.78) using Eq. (1.79).
The stress tensor components in the system of reference axes are then calculated from the principal
values by assuming that the principal directions have not been affected by the occurrence of a plastic
correction.

In UDEC, the default value for the tensile strength is zero. This value is set to σ tmax if the value
assigned to the tensile strength exceeds σ tmax . If the computed value of σ3 exceeds σ t in a zone,
the tensile strength is set to zero for that zone. This simulates instantaneous tensile softening.

The plastic strain is not calculated directly in this model, in order to speed the calculation. The
strain-softening model can be used if plastic strains are needed and/or gradual or no tensile softening
is desired.

1.6.2.5 Oedometer Test

This example concerns the determination of stresses in a Mohr-Coulomb material subjected to an
oedometer test. In this experiment, two of the principal stress components are equal and, during
plastic flow, the stress point evolves along an edge of the Mohr-Coulomb criterion representation in
the principal stress space. The purpose is to validate the numerical technique adopted to handle such
a situation. Results of a numerical experiment are presented and compared to an exact solution.

The boundary conditions for the plane-strain oedometric test are sketched in Figure 1.8. They
correspond to the uniform strain rates:

�ex = 0
�ey = v�t/L (1.80)
�ez = 0

where x and y refer to the system of reference axes sketched in the figure, and z is out-of-plane, v
is the constant y-component of the velocity applied to the sample (v < 0), and L is the height of
the sample.

Assuming zero initial stresses, the principal directions of stresses and strains are those of the
coordinate axes. For simplicity, we consider a sample of unit height L = 1.
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Figure 1.8 Boundary conditions for oedometer test

In the elastic range, application of Hooke’s law gives, using that ey = vt at time t ,

σx = α2vt

σy = α1vt (1.81)
σz = σx

where α1 = K + 4/3G and α2 = K − 2/3G.

To apply the Mohr-Coulomb failure criterion, we consider the yield functions

f 1 = σy − σxNφ + 2c
√
Nφ

f 2 = σy − σzNφ + 2c
√
Nφ (1.82)

At the onset of yield, f 1 = f 2 = 0 and, using Eqs. (1.81) and (1.82), we find

t = 2c
√
Nφ

−v(α1 − α2Nφ)
(1.83)
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Hence, yielding will only take place provided α1 − α2Nφ > 0.

During plastic flow, the strain increments are composed of elastic and plastic parts, and we have

�ex = �eex +�e
p
x

�ey = �eey +�e
p
y (1.84)

�ez = �eez +�e
p
z

Using the boundary conditions Eq. (1.80), we may write

�eex = −�epx
�eey = v�t −�e

p
y (1.85)

�eez = −�epz

The flow rule for plastic flow along the edge of the Mohr-Coulomb criterion corresponding to
σx = σz has the form (e.g., see Drescher 1991)

�e
p
x = λ1

∂g1

∂σx
+ λ2

∂g2

∂σx

�e
p
y = λ1

∂g1

∂σy
+ λ2

∂g2

∂σy
(1.86)

�e
p
z = λ1

∂g1

∂σz
+ λ2

∂g2

∂σz

where g1 and g2 are the potential functions corresponding to f 1 and f 2:

g1 = σy − σxNψ

g2 = σy − σzNψ (1.87)
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After partial differentiation, Eq. (1.86) becomes

�e
p
x = −λ1Nψ

�e
p
y = λ1 + λ2 (1.88)

�e
p
z = −λ2Nψ

In further considering that, by symmetry, λ1 = λ2, we obtain

�e
p
x = −λ1Nψ

�e
p
y = 2λ1 (1.89)

�e
p
z = −λ1Nψ

The stress increments, derived from Hooke’s law, are given by the relations

�σx = α1�e
e
x + α2(�e

e
y +�eex)

�σy = α1�e
e
y + α22�eex (1.90)

�σz = �σx

where we have used the symmetry condition �eex = �eez .

Substitution of Eq. (1.85) in Eq. (1.90) yields, using Eq. (1.89),

�σx = α1λ1Nψ + α2(v�t − 2λ1 + λ1Nψ)

�σy = α1(v�t − 2λ1)+ α22λ1Nψ (1.91)
�σz = �σx

The parameter λ1 may now be determined by expressing the condition that, during plastic flow,
�f 1 = 0. Using Eq. (1.82), this condition takes the form

�σy −�σxNφ = 0 (1.92)

UDEC Version 7.0



1 - 40 Constitutive Models

Substitution of Eq. (1.91) in Eq. (1.92) yields, after some manipulations, the expression

λ1 = vλ�t (1.93)

where

λ = α1 − α2Nφ

(α1 + α2)NφNψ − 2α2(Nφ +Nψ)+ 2α1
(1.94)

The UDEC simulation is carried out using a single zone of unit dimensions. Several properties are
used in conjunction with the Mohr-Coulomb model:

bulk modulus 200 MPa
shear modulus 200 MPa
cohesion 1 MPa
friction 10◦
dilation 10◦ and 0◦
tension 5.67 MPa

The velocity components are fixed in the x- and y-directions. A velocity of magnitude 10−5 m/steps
is applied to the top of the model in the negative y-direction for a total of 1000 steps. The stress and
displacement components in the y-direction are monitored and compared to the analytic prediction
obtained from Eqs. (1.81), (1.83) and (1.91), using Eqs. (1.93) and (1.94). Two runs are carried
out using the data file in Example 1.1, with values of 10◦ and 0◦ for the dilation parameter. The
match is very good, as may be seen in Figures 1.9 and 1.10, where numerical and analytic solutions
coincide.

Example 1.1 Oedometer test on the Mohr-Coulomb model

model new
;File:mohr_oed.dat
model title ’Oedometric Test - Mohr-coulomb’
;---------------------------------------------------------------------
; oedometer test
; check plastic flow along an edge of the Mohr-Coulomb criterion
;---------------------------------------------------------------------
block config
block tolerance corner-round-length 1E-2
block tolerance minimum-edge-length 2E-2
block create polygon 0 0 0 1 1 1 1 0
block zone gen quad 2.0
; fish functions to monitor results
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fish define d_sigy
c_k = bulk_mod
c_g = shear_mod
e1 = c_k + 4. * c_g /3.
e2 = c_k - 2. * c_g /3.
sf = friction * math.degrad
nf = math.sin(sf)
nf = (1. + nf) / (1. - nf)
sp = dilation * math.degrad
np = math.sin(sp)
np = (1. + np) / (1. - np)
rl = (e1-e2*nf)/((e1+e2)*nf*np-2.*e2*(nf+np)+2.*e1)
v_dt = -1.e-5
vely = v_dt / block.mechanical.timestep
dsigy = v_dt * (e1+2.*rl*(e2*np-e1))
stepl = -2.*cohesion*math.sqrt(nf)/((e1-e2*nf)*v_dt)

end
;
fish define esigy

whilestepping
if global.step < stepl then

a_sy = a_sy + e1 * v_dt
else

a_sy = a_sy + dsigy
end_if
n_sy = block.zone.stress.yy(z_pnt)

end
;
fish define z_pnt

ib = block.head
z_pnt = block.zone(ib)

end
@z_pnt
;
fish set @bulk_mod 200 @shear_mod 200
fish set @cohesion 1
block gridpoint apply velocity-x 0
block gridpoint apply velocity-y 0
history interval 50
block gridpoint history displacement-y 0.020967752 0.9967741
fish history @n_sy
fish history @a_sy
model save ’mohr_model.sav’
;
; Dilation 10
;
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model restore ’mohr_model.sav’
model title ’Oedometric Test - Mohr-coulomb - Dilation 10’
;
fish set @friction 10 @dilation 10

block zone group ’User:Mohr - Dilation 10’
block zone cmodel assign mohr-c density 1 bulk 200 shear 200 ...

friction 10 cohesion 1 tension 0 dilation 10 ...
range group ’User:Mohr - Dilation 10’

block cycle 0
@d_sigy
block gridpoint apply velocity-y @vely range pos-y .9 1.1
block cycle 865
model save ’Mohr_dilation_10.sav’
;
; Dilation 0
;
model restore ’mohr_model.sav’
model title ’Oedometric Test - Mohr-coulomb - Dilation 0’
;
fish set @friction 10 @dilation 0
block zone group ’User:Mohr - Dilation 0’
block zone cmodel assign mohr-c density 1 bulk 200 shear 200 ...

friction 10 cohesion 1 tension 0 dilation 0 ...
range group ’User:Mohr - Dilation 0’

block cycle 0
@d_sigy
block gridpoint apply velocity-y @vely range pos-y .9 1.1
block cycle 865
model save ’Mohr_dilation_0.sav’
;
return
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Figure 1.9 Oedometric test – comparison of numerical and analytical pre-
dictions for 10◦ dilation

Figure 1.10 Oedometric test – comparison of numerical and analytical pre-
dictions for 0◦ dilation
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1.6.2.6 block zone cmodel Command and Property Keywords

Mohr-Coulomb – block zone cmodel assign mohr-coulomb

(1) bulk elastic bulk modulus, K
(2) cohesion cohesion, c
(3) density mass density, ρ
(4) dilation dilation angle, ψ
(5) flag-brittle tension after yield
(6) friction internal angle of friction, φ
(7) shear elastic shear modulus, G
(8) tension tension limit, σ t

Note that the default tension limit is zero for a material with no friction, and is c/ tan φ otherwise.
If tensile failure occurs in a zone, the tensile strength is set to zero for that zone.

The following property can be printed, plotted or accessed via FISH.
(1) state plastic state
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1.6.3 Ubiquitous-Joint Model

In this model, which accounts for the presence of an orientation of weakness (weak plane) in a Mohr-
Coulomb model, yield may occur either in the solid or along the weak plane, or both, depending on
the stress state, the orientation of the weak plane, and the material properties of the solid and weak
plane.

In the implementation, use is made of a technique by which general failure is first detected, and
relevant plastic corrections are applied, as indicated in the Mohr-Coulomb model description. The
new stresses are then analyzed for failure on the weak plane and updated accordingly. The criterion
for failure on the plane is a local form of the Mohr-Coulomb yield criterion with tension cutoff.
The local shear flow rule is nonassociated, and the local tension flow rule is associated. The Mohr-
Coulomb model was addressed above; developments related to plastic flow on the weak plane are
outlined in this section.

1.6.3.1 Weak Plane Plastic Corrections

Figure 1.11 illustrates the weak plane existing in a Mohr-Coulomb solid, and the global (xy) and
local (x′y′) coordinate frames.

θ
x

x'

y'

y

weak plane

Figure 1.11 A weak plane oriented at an angle θ to the global reference frame
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For simplicity, we define the global stress components by σij (obtained after application of the
plastic corrections). These global stresses are resolved into local components using the expressions

σ ′
11 = σ11 cos2 θ + 2σ12 sin θ cos θ + σ22 sin2θ

σ ′
22 = σ11 sin2θ − 2σ12 sin θ cos θ + σ22 cos2 θ (1.95)

σ ′
33 = σ33

σ ′
12 = −(σ11 − σ22) sin θ cos θ + σ12(cos2 θ − sin2θ)

where θ is the joint angle (measured counterclockwise from the x-global axis).

By convention, let τ represent the magnitude of the tangential traction component on the weak
plane, the associated strain variable is γ , and we have

τ = |σ ′
12|

γ = |e′12| (1.96)

With this notation, the local expression of the incremental elastic laws have the form

�σ ′
11 = α1�e

′e
11 + α2(�e

′e
22 +�e′e33)

�σ ′
22 = α1�e

′e
22 + α2(�e

′e
11 +�e′e33) (1.97)

�σ ′
33 = α1�e

′e
33 + α2(�e

′e
11 +�e′e22)

�τ = 2G�γ e

where α1 = K + 4G/3, α2 = K − 2G/3, and the superscript e stands for “elastic part.”
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The weak-plane failure criterion may be represented in the (σ ′
22, τ ) plane, as illustrated in Fig-

ure 1.12.

A

B

τ

C

f =0t

f =0
s

tσ j

Cj

tan j/ φCj

σ22

Figure 1.12 Weak-plane failure criterion

The local failure envelope is defined from point A to B by a Mohr-Coulomb failure criterion defined
as f s = 0, with

f s = −τ − σ ′
22 tan φj + cj (1.98)

and from B to C by a tension failure criterion of the form f t = 0, with

f t = σ tj − σ ′
22 (1.99)

where φj , cj and σ tj are the friction, cohesion and tensile strength of the weak plane, respectively.
Note that, for a weak plane with a nonzero friction angle, the maximum value of the tensile strength
is given by

σ tj,max = cj

tan φj
(1.100)
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The shear and tensile potential functions gs and gt correspond to a nonassociated flow rule with
dilatancy, ψj , and an associated flow rule, respectively. They have the form

gs = −τ − σ ′
22 tanψj (1.101)

and

gt = −σ ′
22 (1.102)

The flow rule is given a unique definition in the vicinity of the failure criterion edge by application
of a technique already described in the context of the Mohr-Coulomb model. Here, a function,
h(σ ′

22, τ ) = 0, which may be represented by the diagonal between the representation of f s = 0
and f t = 0 in the (σ ′

22, τ ) plane, is used (see Figure 1.13). This function has the form

h = τ − τPj − αPj (σ
′
22 − σ tj ) (1.103)

where τPj and αPj are constants defined as

τPj = cj − tan φjσ
t
j

αPj =
√

1 + tan φ2
j − tan φj (1.104)

τ

domain 1

domain 2

σ 22

f =0
s

h=0

tf =0

Figure 1.13 Ubiquitous-joint model: domains used in the definition of the
weak-plane flow rule
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A stress state violating the local failure criterion is represented by a point in the (σ ′
22, τ )plane, located

either in domain 1 or 2, corresponding to positive or negative domain of h = 0, respectively. If in
domain 1, shear failure is declared on the plane, and the stress point is brought back to the curve
f s = 0 using a flow rule derived using the potential function gs . If in domain 2, local tensile failure
takes place, and the stress point is brought back to f t = 0 using a flow rule derived using gt .

First consider shear failure on the plane; the flow rule has the form

�e′p11 = λs
∂gs

∂σ ′
11

�e′p22 = λs
∂gs

∂σ ′
22

(1.105)

�e′p33 = λs
∂gs

∂σ ′
33

�γp = λs
∂gs

∂τ

where the superscript p refers to plastic parts associated with failure on the weak plane, and the
magnitude of λs is as yet unknown. Using Eq. (1.101) for gs , these equations become, after partial
differentiation,

�e′p11 = 0

�e′p22 = −λs tanψj (1.106)

�e′p33 = 0

�γp = −λs

The elastic strain increments in the elastic relations Eq. (1.97) are expressed as differences between
total and plastic strain increments for the step. Assuming that the plastic contributions of general
and local failure are additive, we follow a reasoning similar to that used in the derivation of the
stress corrections for the Mohr-Coulomb criterion, in which we interpret the elastic guesses there
as the stresses here, obtained after application of the plastic corrections relating to general failure.
(This technique is approximate only when failure occurs both in the matrix and on the weak plane.)
Using this approach, it may be shown that the new stress state may be expressed as

σ ′N
11 = σ ′

11 + α2 tanψjλ
s

σ ′N
22 = σ ′

22 + α1 tanψjλ
s (1.107)

σ ′N
33 = σ ′

33 + α2 tanψjλ
s

τN = τ + 2Gλs
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where G is the shear modulus, and λs is given by

λs = f s(σ ′
22, τ )

2G+ α1 tan φj tanψj
(1.108)

The new shear stress on the weak plane may be derived from τN and τ , using the relation

σ ′N
12 = σ ′

12
τN

τ
(1.109)

The local stress corrections have the form

�σ ′
11 = α2 tanψjλ

s

�σ ′
22 = α1 tanψjλ

s (1.110)

�σ ′
33 = α2 tanψjλ

s

�σ ′
12 = σ ′

12
τN − τ

τ

where λs is given by Eq. (1.108).

Finally, the global stress corrections for shear failure on the plane, obtained by resolution of the
local stress corrections into the global axes, may be expressed as

�σ11 = −2�σ ′
12 (cos θ sin θ)+�σ ′

11 cos2 θ +�σ ′
22 sin2 θ

�σ22 = 2�σ ′
12 (cos θ sin θ)+�σ ′

11 sin2 θ +�σ ′
22 cos2 θ

(1.111)
�σ33 = �σ ′

33

�σ12 = �σ ′
12 (cos2 θ − sin2θ)+ (�σ ′

11 −�σ ′
22) sin θ cos θ

These corrections are added to the stress components σij , which include the stress corrections for
general failure, if any, to provide the new stress state for the step.
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We now consider tensile failure on the plane. In this case, the flow rule has the form

�e′p11 = λt
∂gt

∂σ ′
11

�e′p22 = λt
∂gt

∂σ ′
22

(1.112)

�e′p33 = λt
∂gt

∂σ ′
33

�γp = λt
∂gt

∂τ

where λt is a parameter of magnitude as yet unknown. Using Eq. (1.102) for gt , these equations
become, after partial differentiation,

�e′p11 = 0

�e′p22 = −λt (1.113)

�e′p33 = 0

�γp = 0

Using the same reasoning as described above, we obtain

σ ′N
11 = σ ′

11 + λtα2

σ ′N
22 = σ ′

22 + λtα1 (1.114)

σ ′N
33 = σ ′

33 + λtα2

τN = τ

and

λt = f t (σ ′
22)

α1
(1.115)

UDEC Version 7.0



1 - 52 Constitutive Models

The local stress corrections for tensile failure on the weak plane may be expressed, after substitution
of Eq. (1.115) for λt in Eq. (1.114), as

�σ ′
11 = (σ t − σ ′

22)
α2

α1

�σ ′
22 = (σ t − σ ′

22) (1.116)

�σ ′
33 = (σ t − σ ′

22)
α2

α1

where use has been made of Eq. (1.99) for f t .

After resolution into global axes, the stress corrections become

�σ11 = (σ t − σ ′
22)

(α2

α1
cos2 θ + sin2 θ

)
�σ22 = (σ t − σ ′

22)
(α2

α1
sin2 θ + cos2 θ

)
(1.117)

�σ33 = (σ t − σ ′
22)
α2

α1

�σ12 = −(σ t − σ ′
22)(1 − α2

α1
) sin θ cos θ

In large-strain mode, the orientation θ of the weak plane is adjusted to account for rigid body
rotations, and rotations due to deformations. The correction �θ , evaluated as average over all
triangles in a zone, has the form

�θ = e′12 + ω (1.118)

where

e′12 = −(e11 − e22) sin θ cos θ + e12(cos2 θ − sin2θ)

ω = 1

2
(u̇1,2 − u̇2,1) (1.119)

and �θ is expressed in radians.
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1.6.3.2 Implementation Procedure

In the implementation of the ubiquitous-joint model, stresses corresponding to the elastic guess for
the step are first analyzed for general failure, and relevant plastic corrections are made, as described
in the Mohr-Coulomb model. The resulting stress components (labeled σij in this section) are then
examined for failure on the weak plane.

The corresponding local stress components σ ′
22 and τ are calculated using Eqs. (1.95) and (1.96).

If these stresses violate the weak-plane composite yield criterion (see Eqs. (1.98) and (1.99)),
corrections must be applied to the components σij to give the new stress state for the step. In this
situation we have that either h(σ ′

22, τ ) > 0 or h(σ ′
22, τ ) ≤ 0 (see Eqs. (1.103) and (1.104)). In the

first case, shear failure takes place on the weak plane. New stresses are evaluated by adding the
corrections Eq. (1.111) to σij . In the second case, weak-plane tensile failure is declared, and new
stresses are calculated using the corrections Eq. (1.117).

In large-strain mode, the orientation of the weak plane is adjusted to account for body rotations (see
Eqs. (1.118) and (1.119)).

The default value for the weak-plane tensile strength is zero if φj = 0, and σ tj,max otherwise (see
Eq. (1.100)). This last value is also retained in the code if the value assigned for the weak-plane
tensile strength exceeds σ tj,max . If the computed value of σ ′

22 exceeds σ tj,max in a zone, then the
tensile strength is set to zero for that zone. This simulates instantaneous softening.
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1.6.3.3 block zone cmodel Command and Property Keywords

Ubiquitous-Joint – block zone cmodel assign ubiquitous-joint

(1) bulk elastic bulk modulus, K
(2) cohesion cohesion of matrix, c
(3) density mass density, ρ
(4) dilation dilation angle of matrix, ψ
(5) friction internal angle of friction of matrix, φ
(6) jangle joint angle taken counterclockwise from the x-axis, θ
(7) joint-cohesion joint cohesion, cj
(8) joint-dilation joint dilation angle, ψj
(9) joint-friction joint friction angle, φj
(10) joint-tension joint tension limit, σ tj
(11) shear elastic shear modulus, G
(12) tension tension limit of matrix, σ t

Note that the default tension limit of the matrix, σ t , is the same as that for the Mohr-Coulomb
model. The default joint tension limit, σ tj , is zero if φj = 0, and is cj /tanφj otherwise. If tension
failure occurs on the joint, then the joint tensile strength is set to zero.

The following property can be printed, plotted or accessed via FISH.
(1) state plastic state
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1.6.4 Strain-Hardening/Softening Model

This model is based on the UDEC Mohr-Coulomb model with nonassociated shear and associated
tension flow rules, as described earlier. The difference, however, lies in the possibility that the
cohesion, friction, dilation and tensile strength may harden or soften after the onset of plastic yield.
In the Mohr-Coulomb model, those properties are assumed to remain constant. Here, the user can
define the cohesion, friction and dilation as piecewise-linear functions of a hardening parameter
measuring the plastic shear strain. A piecewise-linear softening law for the tensile strength can
also be prescribed in terms of another hardening parameter measuring the plastic tensile strain. The
code measures the total plastic shear and tensile strains by incrementing the hardening parameters
at each timestep, and causes the model properties to conform to the user-defined functions.

The yield and potential functions, plastic flow rules and stress corrections are identical to those of
the Mohr-Coulomb model, as discussed in Section 1.6.2.

1.6.4.1 Hardening/Softening Parameters

Plastic shear strain is measured by the shear hardening parameter eps , whose incremental form is
defined as (see Equation 6.4 in Vermeer and deBorst 1984)

�eps =
{

1

2

(
�e

ps

1 −�e
ps
m

)2 + 1

2

(
�e

ps
m

)2 + 1

2

(
�e

ps

3 −�e
ps
m

)2
} 1

2

(1.120)

where

�e
ps
m = 1

3

(
�e

ps

1 +�e
ps

3

)

and �epsj , j = 1, 3 are the principal plastic shear strain increments.

The tensile hardening parameter ept measures the accumulated tensile plastic strain; its increment
is defined as

�ept = �e
pt

3 (1.121)

where �ept3 is the increment of tensile plastic strain in the direction of the major principal stress
(recall that tensile stresses are positive).

The notation used above (and in similar expressions to be presented later) needs some clarification.
The term�e

ps
i is identical to�epi (defined previously in Eq. (1.70)), where i = 1, 2, 3. The added

superscript s denotes that the plastic strain is related to the shear yield surface (rather than the tensile
yield surface). Note that �epsi are plastic principal strain increments, not shear strain increments.
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Similarly, �ept3 is identical to �ep3 , defined in Eq. (1.77); here, the superscript t denotes that the
plastic strain is related to the tensile yield surface.

The following example demonstrates the relation between the incremental hardening parameter
and the axial strain increment for an unconfined compression test of an axisymmetric sample of
frictionless material. The results show that the average value for the plastic strain increment is
equal to the axial strain increment.

Example 1.2 Relation between incremental hardening parameter and axial strain increment
for an axial compression test

model new
;file: ss_1.dat
block config axisymmetry
block smallstrain
block tolerance corner-round-length 0.01
block tolerance minimum-edge-length 0.02
block create polygon 0 0 0 10 5 10 5 0
block zone gen edge 1.0
block zone group ’mat1’
block zone cmodel assign strain-softening density 1 bulk 1E8 shear 1E8 ...

friction 0 cohesion 1E5 tension 1E20 range group ’mat1’
block gridpoint apply velocity-y 0 range pos-x -0.1 5.1 pos-y -0.1 0.1
block gridpoint apply velocity-y 1.728 range pos-x -0.1 5.1 pos-y 9.9 10.1
block zone history stress-yy 0.0 0.0
fish define results

sum = 0.0
count = 0
iab = block.head
loop while iab # 0

iaz= block.zone(iab)
loop while iaz # 0

sum = sum + block.zone.prop(iaz,’strain-shear-plastic’)
count = count + 1
iaz = block.zone.next(iaz)

endloop
iab=block.next(iab)

endloop
av_ep = sum / count
igp = block.gp.near(0, 10)
ax_e_inc = block.gp.disp.y(igp)/block.gp.pos.y(igp)
ii = io.out(’ Average plastic strain increment = ’+ ...

string(av_ep,10,’ ’,4,’E’))
ii = io.out(’ Axial strain increment = ’+ ...

string(ax_e_inc,10,’ ’,4,’E’))
end
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block cycle 1500
block zone property strain-shear-plastic 0
block gridpoint initialize displacement-x 0.0
block gridpoint initialize displacement-y 0.0
block cycle 40
@results

1.6.4.2 User-Defined Functions for Cohesion, Friction, Dilation and Tensile Strength

Consider a one-dimensional stress-strain curve σ − e, which softens upon yield and attains some
residual strength:

e=ee

e

e=e +ee p

σ
yield

Figure 1.14 Example stress-strain curve

The curve is linear to the point of yield; in that range, the strain is elastic only (i.e., e = ee).
After yield, the total strain is composed of elastic and plastic parts (i.e., e = ee + ep). In the
softening/hardening model, the user defines the cohesion, friction, dilation and tensile strength
variance as functions of the plastic portion, ep, of the total strain. Examples of these functions
are sketched in Figure 1.15, and may be approximated in UDEC as sets of linear segments (see
Figure 1.16).

UDEC Version 7.0



1 - 58 Constitutive Models

eps

C

eps

φ

(a) (b)

Figure 1.15 Variation of cohesion (a) and friction angle (b) with plastic strain

C

eps eps

φ

(a) (b)

Figure 1.16 Approximation by linear segments

Hardening and softening behaviors for the cohesion, friction and dilation in terms of the shear
parameter eps (see Eq. (1.120)) are provided by the user in the form of tables. Each table contains
pairs of values: one for the parameter, and one for the corresponding property value. It is assumed
that the property varies linearly between two consecutive parameter entries in the table. Softening
of the tensile strength is described in a similar manner using the parameter ept (see Eq. (1.121)).
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For example, the input in Example 1.3 illustrates a piecewise-linear definition of softening proper-
ties.

Example 1.3 Piecewise linear definition of softening properties

;file: ss_2.dat
block zone cmodel assign strain-softening density 2E3 bulk 8.62E9 ...

shear 1.15E10 friction 40 cohesion 2E7 tension 1.5E7 dilation 10 ...
table-friction 1 table-coh 2 table-tension 4 table-dilation 3 ...
range group ’mat1’

table 1 add 0,40 .01,30
table 2 add 0,20e6 .01,10e6
table 3 add 0,10 .01,5
table 4 add 0,15e6 .01,0.0

Here, the friction function is defined in table 1, the cohesion in table 2, the dilation in table 3 and
the tensile strength in table 4. Note that the initial friction, cohesion, dilation and tensile strength
must be defined (here, as 40◦, 20 MPa, 10◦ and 15 MPa, respectively). The functions each consist
of two linear segments, as shown in Figure 1.17. The values remain constant for plastic strains
greater than the last table value.

0.01 0.02

30°

40°

φ

0

10e6

20e6

C

0.01 0.02
0

0.01 0.010.02 0.02
0 0

5°

10° 15e6

ψ σt

(a) friction (b) cohesion

(d) tensile strength(c) dilation

Figure 1.17 Friction (a), cohesion (b), dilation (c) and tensile strength (d)
defined by two linear segments

Hardening behavior for the cohesion, friction and dilation can be produced by an increase in these
properties with increasing plastic strain measure.
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1.6.4.3 Implementation Procedure

In the implementation of this model, new stresses for the step are computed, as described in the
UDEC Mohr-Coulomb model description, using the current values of the model properties. Plastic
shear and tensile strain increments are evaluated from Eqs. (1.70) and (1.77) using Eq. (1.75) of λs

and Eq. (1.79) of λt . Hardening increments are calculated as the surface average of values obtained
from Eqs. (1.120) and (1.121) for all triangles involved in the zone. The hardening parameters
are updated, and new model properties are evaluated by linear interpolation in the tables. These
properties are stored for use in the next step. The hardening or softening lags one timestep behind
the corresponding plastic deformation. In an explicit code, this error is small because the steps are
small.

For a material with friction, the maximum value of the tensile strength is evaluated from Eq. (1.62)
using the new cohesion and friction angle. This value is retained by the code if it is smaller than
the tensile strength updated from the table.
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1.6.4.4 block zone cmodel Command and Property Keywords

Strain-Hardening/Softening – block zone cmodel assign strain-softening

(1) bulk elastic bulk modulus, K
(2) cohesion cohesion, c
(3) density mass density, ρ
(4) dilation dilation angle, ψ
(5) friction angle of internal friction, φ
(6) shear elastic shear modulus, G
(7) table-cohesion number of table relating cohesion to plastic shear strain
(8) table-dilation number of table relating dilation angle to plastic shear strain
(9) table-friction number of table relating friction angle to plastic shear strain
(10) table-tension number of table relating tension limit to plastic tensile strain
(11) tension tension limit, σ t

The strain-hardening/softening behavior is controlled by the variation in friction, cohesion and
dilation as a function of plastic shear strain, and tension limit as a function of plastic tensile strain,
given by a specified table of values. Note that if table numbers are given as 0 (default), the properties
will take the values given (i.e., with cohesion, dilation, friction or tension keyword).

The following properties can be printed, plotted or accessed via FISH.

(1) state plastic state
(2) strain-shear-plastic accumulated plastic shear strain
(3) strain-tension-plastic accumulated plastic tensile strain
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1.6.5 Bilinear Strain-Hardening/Softening Ubiquitous-Joint Model

The bilinear strain-hardening/softening ubiquitous-joint model is a generalization of the ubiquitous-
joint model described in Section 1.6.4. In the bilinear model, the failure envelopes for the matrix
and joint are the composite of two Mohr-Coulomb criteria with a tension cutoff that can harden or
soften according to specified laws. A nonassociated flow rule is used for shear-plastic flow, and an
associated flow rule for tensile-plastic flow.

The softening behaviors for the matrix and the joint are specified in tables in terms of four indepen-
dent hardening parameters (two for the matrix and two for the joint), which measure the amount of
plastic shear and tensile strain, respectively. In this numerical model, general failure is first detected
for the step, and relevant plastic corrections are applied. The new stresses are then analyzed for
failure on the weak plane and updated accordingly. The hardening parameters are incremented if
plastic flow has taken place, and the parameters of cohesion, friction, dilation and tensile strength
are adjusted for the matrix and the joint using the tables.

1.6.5.1 Failure Criterion and Flow Rule for the Matrix

The criterion for failure in the matrix used in this model is sketched in the principal stress plane
(σ1, σ3) in Figure 1.18. (Recall that compressive stresses are negative and, by convention, σ1 ≤
σ2 ≤ σ3.)

The failure envelope is defined by two Mohr-Coulomb failure criteria (f s2 = 0 and f s1 = 0 for
segments A− B and B − C) and a tension failure criterion (f t = 0 for segment C −D).

The shear failure criterion has the general form f s = 0. Failure is characterized by a cohesion, c,
and a friction angle, φ. For segment A− B, cohesion and friction angle are defined by c2, and φ2,
respectively. For segmentB−C, cohesion and friction angle are defined by c1 and φ1, respectively.
The tensile failure criterion is specified by means of the tensile strength, σ t (positive value); thus
we have

f s = σ1 − σ3 Nφ + 2c
√
Nφ (1.122)

f t = σ3 − σ t (1.123)

where

Nφ = 1 + sin φ

1 − sin φ
(1.124)
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The value of σ3 corresponding to the intersection of f s2 = 0 and f s1 = 0 is given by

σ I3 = 2c2
√
Nφ2 − 2c1

√
Nφ1

Nφ2 −Nφ1

(1.125)

Note that the tensile cap acts on segment B − C of the shear envelope, and for a material with
nonzero friction angle φ1, the maximum value of the tensile strength is given by

σ tmax = c1

tan φ1
(1.126)
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c /tan1 1φ

c /tan2 2φ
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Figure 1.18 UDEC bilinear matrix failure criterion

In the model formulation, elastic guesses for the stresses are first evaluated for the step using total
strain increments. Plastic yielding is detected if the corresponding stress point (σ I1 , σ

I
3 ) lies outside

the failure surface representation in Figure 1.18. In this case, a stress correction must be applied to
the elastic guess. It is determined by allowing plastic flow to occur in order to restore the condition
f s2 = 0, f s1 = 0 or f t = 0, depending on the position of the stress point above A − B, B − C
or C −D. (Bisectors are used at B and C to delimit the domain of failure attached to a particular
segment of the yield surface.)
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The usual assumption is made: that total strain increments can be decomposed into elastic and
plastic parts. The flow rule for plastic yielding has the form

�e
p
i = λ

∂g

∂σi
(1.127)

where i = 1, 3. The potential function g for shear yielding is gs . This function corresponds to the
nonassociated law,

gs = σ1 − σ3Nψ (1.128)

where ψ , the dilation angle, is equal to ψ2 for failure along A− B, ψ1 along B − C, and

Nψ = 1 + sinψ

1 − sinψ
(1.129)

The potential function for tensile yielding is gt . It corresponds to the associated flow rule,

gt = σ3 (1.130)

It may be shown that the plastic strain increments for shear failure have the form

�e
ps
1 = λs

�e
ps
2 = 0 (1.131)

�e
ps
3 = −λsNψ

The stress corrections for shear failure are

�σ1 = −λs(α1 − α2Nψ)

�σ2 = −λsα2(1 −Nψ) (1.132)

�σ3 = −λs(−α1Nψ + α2)
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where

λs = σ I1 − σ I3 Nφ + 2c
√
Nφ

(α1 − α2 Nψ)− (−α1 Nψ + α2) Nφ
(1.133)

and, by definition,

α1 = K + 4

3
G

(1.134)

α2 = K − 2

3
G

In turn, the plastic strain increments for tensile failure have the form

�e
pt
1 = 0

�e
pt
2 = 0 (1.135)

�e
pt
3 = λt

The stress corrections for tensile failure are

�σ1 = −λtα2

�σ2 = −λtα2 (1.136)

�σ3 = −λtα1

where

λt = σ I3 − σ t

α1
(1.137)
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1.6.5.2 Failure Criterion and Flow Rule for the Weak Plane

The stresses, corrected for plastic flow in the matrix, are resolved into components parallel and
perpendicular to the weak plane, and tested for ubiquitous-joint failure. The failure criterion is
expressed in terms of the magnitude of the tangential traction component, τ = |σ ′

12|, and the
normal traction component, σ ′

22, on the weak plane.

The failure criterion is represented in Figure 1.19 and corresponds to two Mohr-Coulomb failure
criteria (f s2 = 0 for segment A − B; f s1 = 0 for segment B − C) and a tension failure criterion
(f t = 0, for segmentC−D). Each shear criterion has the general form f s = 0, and is characterized
by a cohesion and a friction angle cj , φj , equal to cj2 , φj2 along segment A− B and cj1 , φj1 along
B −C. The tensile criterion is specified by means of the tensile strength, σ tj (positive value). Thus
we have

f s = τ + σ ′
22 tan φj − cj (1.138)

f t = σ ′
22 − σ tj (1.139)

Note that for a weak plane with nonzero friction angleφj1 , the maximum value of the tensile strength
is given by

σ tj max
= cj1

tan φj1

(1.140)

B
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Figure 1.19 UDEC bilinear joint failure criterion
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Yield is detected, and stress corrections applied, using a technique similar to the one described in
the matrix context.

Here, the flow rule for plastic yielding has the form

�e′ps22 = λ
∂g

∂σ ′
22

�γps = λ
∂g

∂τ
(1.141)

where γ is the strain variable associated to τ , and we have

�γps = |�e′ps12| (1.142)

The potential function, g, for shear yielding on the weak plane is gs . It corresponds to the nonas-
sociated law,

gs = τ + σ ′
22 tanψj (1.143)

where ψj , the dilation angle, is equal to ψj2 for failure along A− B, and ψj1 along B − C.

The potential function, g, for tensile yielding on the weak plane isgt . It corresponds to the associated
flow rule,

gt = σ ′
22 (1.144)

It may be shown that the local plastic strain increments for shear failure are such that

�e′ps22 = λs tanψj

�γ ps = λs (1.145)
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The stress corrections for shear failure are

�σ ′
11 = −λsα2 tanψj

�σ ′
22 = −λsα1 tanψj

�σ ′
33 = −λsα2 tanψj

�τ = −λs2G (1.146)

where

λs = τO + σ ′O
22 tan φj − cj

2G+ α1 tanψj tan φj
(1.147)

and the superscript O indicates values obtained just before detection of failure on the weak plane.

The plastic corrections for the local shear stress components on the weak plane are derived by
scaling

�σ ′
12 = �τ

σ ′O
12

τO
(1.148)

In turn, local plastic strain increments for tensile failure have the form

�e′pt22 = λt

�γ pt = 0 (1.149)

The stress corrections for tensile failure are

�σ ′
11 = −λtα2

�σ ′
22 = −λtα1 (1.150)

�σ ′
33 = −λtα2
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where

λt = σ ′O
22 − σ tj

α1
(1.151)

1.6.5.3 Large-Strain Update of Orientation

In large-strain, the orientation of the weak plane is adjusted, per zone, to account for rigid-body
rotations, and rotations due to deformations. The corrections are identical to those described in
Section 1.6.3.1.

1.6.5.4 Hardening Parameters

In the bilinear strain-hardening/softening ubiquitous-joint model, some or all of the zone yielding
parameters (cohesion, friction, dilation and tensile strength) for the matrix and joint are modified
automatically after the onset of plasticity, according to piecewise linear laws specified on input, in
terms of a range of values for the hardening parameters. (See Section 1.6.4.2.) One table number
must be specified in the block zone cmodel property command for each softening parameter. (If no
table property number is specified, the parameter is taken as constant.) The corresponding table
data contain pairs of values for the parameter and the property between which a linear variation is
assumed. The last property value is used for values of the hardening parameter beyond the last one
specified in the table.

Four independent hardening parameters are used in this model:

(1) κs measures the matrix plastic shear strain, and is used to update the matrix cohesion,
friction and dilation;

(2) κt measures the matrix plastic volumetric tensile strain, and is used to update the matrix
tensile strength;

(3) κsj estimates the joint plastic shear strain, and controls the joint cohesion, friction and
dilation update; and

(4) κtj evaluates the joint plastic volumetric tensile strain, and controls the joint tensile
strength update.

The parameters are defined as the sum of incremental measures of plastic strain for the zone. The
zone-hardening increments are calculated as the average of hardening increments over all triangles
involved in the zone.

The shear-hardening increment for a triangle is the square root of the second invariant of the
incremental plastic shear-strain deviator tensor for the step. For the matrix, it is given as

�κs = 1√
2

√
(�e

ps
1 −�e

ps
m )

2 + (�e
ps
m )

2 + (�e
ps
3 −�e

ps
m )

2 (1.152)
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where �epsm is the volumetric plastic shear strain increment,

�e
ps
m = 1

3
(�e

ps
1 +�e

ps
3 ) (1.153)

and the plastic strain increments are given by Eq. (1.131), using Eq. (1.133) for λs .

For the joint, the formula is

�κsj =
√

1

3
(�e′ps22)

2 + (�e′ps12)
2 (1.154)

where the plastic strain increments are given by Eq. (1.145) (see Eq. (1.142)), using Eq. (1.147) for
λs .

The tetrahedron tensile-hardening increment is the plastic volumetric tensile-strain increment.

For the matrix, we have

�κt = �ε
pt
3 (1.155)

where the plastic strain increment is given by Eq. (1.135), using Eq. (1.137) for λt .

For the joint, the expression is

�κtj = �e′pt22 (1.156)

where the plastic strain increment is given by Eq. (1.149), using Eq. (1.151) for λt .

UDEC Version 7.0



BLOCK CONSTITUTIVE MODELS 1 - 71

1.6.5.5 Implementation Procedure

The implementation of the bilinear model proceeds as indicated above. An elastic guess, σ Iij , is first
computed using stress increments for the step evaluated by application of Hooke’s law to the total
strain increments, �eij . Principal stresses are calculated, ordered such that σ I1 ≤ σ I2 ≤ σ I3 , and
tested for failure in the matrix using the yield criteria Eqs. (1.122) and (1.123). In principle, matrix
failure is declared if the representation of the stress point (σ I1 , σ

I
3 ) falls outside the yield surface in

Figure 1.18. In this case, stress corrections are applied to the principal values of the elastic guess,
which depend on the position of the stress point aboveA−B, B−C or C−D. (Bisectors are used
at B and C to delimit the domain of failure attached to a particular segment of the yield surface.)

The stress corrections for shear failure in the matrix are given by Eqs. (1.132) and (1.133), where
the parameters of cohesion, c, friction, φ, and dilation, ψ , have values c2, φ2, ψ2 for failure along
A− B, and c1, φ1, ψ1 for failure along B − C.

The stress corrections for tensile failure in the matrix are given by Eqs. (1.136) and (1.137).

The stress tensor components in the system of reference axes, σOij , are then calculated from the
corrected principal values by assuming that the principal directions have not changed during plastic
flow.

Local traction components on the weak plane are defined as σ ′
22 and τ , with σ ′

22 being the normal
component, and τ = |σ ′

12| being the magnitude of the tangential traction component. These
stresses are resolved from σOij , and examined for ubiquitous-joint failure using the yield criteria
Eqs. (1.138) and (1.139). In principle, ubiquitous-joint failure is declared if the representation of
the stress point (σ ′O

22, τ
O) falls outside the yield surface in Figure 1.19. In this case, local stress

corrections, which depend on the position of the stress point in the vicinity of A − B, B − C or
C −D, are applied. (Bisectors are used at B and C to delimit the domain of failure attached to a
particular segment of the yield surface.)

The stress corrections for shear joint failure are given by Eqs. (1.146) to (1.148), where the param-
eters of cohesion, cj , friction, φj , and dilation, ψj , have values cj2 , φj2 , ψj2 for failure alongA−B,
and cj1 , φj1 , ψj1 for failure along B − C.

The stress corrections for tensile joint failure are given by Eqs. (1.150) and (1.151).

Finally, the local stress components are resolved back into global axes.

In large-strain mode, the unit normal to the weak plane is adjusted per zone to account for body
rotations.

After determination of the new stresses for the step, the hardening parameters are incremented using
Eqs. (1.152), (1.154), (1.155) and (1.156). These parameters are then used to determine new values
of cohesion, friction, dilation and tensile strength for the matrix and the joint from the available
input tables.
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It is assumed that the tensile strength of the material can never increase. Also, for material with
friction, the value will not exceed the maximum value σ tmax or σ tj max (see Eqs. (1.126) and (1.140)).

Note that, by default, the yield model is linear in both the matrix and the joint, in which case only
section 1 (where f s1 = 0) and section 3 (where f t = 0) of the yield curve are recognized (even if
properties are assigned for section 2, where f s2 = 0). To activate the bilinear laws, the property
flag-bilinear and/or flag-bilinear-joint must be set to 1.

Also, if the friction angles for sections 1 and 2 become equal, the model will be considered as linear
and section 2 will be ignored (for the matrix and/or the joint, as appropriate). Section 2 will also be
ignored if the intersection of section 1 and 2 corresponds to a stress point which violates the tensile
criterion.
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1.6.5.6 block zone cmodel Command and Property Keywords

Strain-Softening/Hardening Ubiquitous-Joint – block zone cmodel assign softening-
ubiquitous

(1) bulk elastic bulk modulus, K
(2) cohesion matrix cohesion, c1

(3) cohesion-2 matrix cohesion, c2

(4) density mass density, ρ
(5) dilation-2 matrix dilation angle, ψ2

(6) dilation matrix dilation angle, ψ1

(7) flag-bilinear = 0 for matrix linear model (default);
= 1 for matrix bilinear model

(8) flag-bilinear-joint = 0 for joint linear model (default);
= 1 for joint bilinear model

(9) friction matrix friction angle, φ1

(10) friction-2 matrix friction angle, φ2

(11) jangle angle of ubiquitous plane measured counterclockwise from x-axis
(2D models)

(12) joint-cohesion-2 joint cohesion, cj2

(13) joint-cohesion joint cohesion, cj1

(14) joint-dilation-2 joint dilation angle, ψj2

(15) joint-dilation joint dilation angle, ψj1

(16) joint-friction-2 joint friction angle, φj2

(17) joint-friction joint friction angle, φj1

(18) joint-tension joint tension limit, σ tj
(19) shear elastic shear modulus, G
(20) table-cohesion number of table relating matrix cohesion c1 to matrix plastic

shear strain
(21) table-cohesion-2 number of table relating matrix cohesion c2 to matrix plastic

shear strain
(22) table-dilation number of table relating matrix dilation angle ψ1 to matrix

plastic shear strain
(23) table-dilation-2 number of table relating matrix dilation ψ2 to matrix plastic

shear strain
(24) table-friction number of table relating matrix friction φ1 angle to matrix

plastic shear strain

(25) table-friction-2 number of table relating matrix friction angle φ2 to matrix
plastic shear strain
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(26) table-joint-cohesion number of table relating joint cohesion cj1 to joint plastic
shear strain

(27) table-joint-cohesion-2 number of table relating joint cohesion cj2 to joint plastic
shear strain

(28) table-joint-dilation number of table relating joint dilation ψj1 to joint plastic
shear strain

(29) table-joint-dilation-2 number of table relating joint dilation ψj2 to joint plastic
shear strain

(30) table-joint-friction number of table relating joint friction angle φj1 to joint
plastic shear strain

(31) table-joint-friction-2 number of table relating joint friction angle φj2 to joint
plastic shear strain

(32) table-joint-tension number of table relating joint tension limit σ tj to joint
plastic tensile strain

(33) table-tension number of table relating matrix tension limit σ t to matrix
plastic tensile strain

(34) tension matrix tension limit, σ t

Table 1.1 lists the properties by matrix and joint failure segments.

Note that the default tension limits for the matrix and weakness planes are the same as those in the
ubiquitous-joint model.

The following properties can be printed, plotted or accessed via FISH.

(1) state plastic state
(2) strain-shear-plastic accumulated matrix plastic shear strain
(3) strain-shear-plastic-joint accumulated joint plastic shear strain
(4) strain-tensile-plastic accumulated matrix plastic tensile strain
(5) strain-tensile-plastic-joint accumulated joint plastic tensile strain
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Table 1.1 Property groups by failure segment for the bilinear,
strain-hardening/softening ubiquitous-joint model

Properties Description

general

bulk bulk modulus

density mass density

flag-bilinear-joint 1 for bilinear joint law

0 for linear joint law (default)

flag-bilinear 1 for bilinear matrix law

0 for linear matrix law (default)

jangle angle of weakness plane

measured counterclockwise

from x-axis (2D models)

tension-joint <table-joint-tension> tension limit of joint

segments 1 and 2

shear shear modulus

tension <table-tension> tension limit of matrix

segments 1 and 2

matrix segment 1

cohesion <table-cohesion> cohesion

dilation <table-dilation> dilation (degree)

friction <table-friction> friction (degree)

matrix segment 2

cohesion-2 <table-cohesion-2> cohesion

dilation-2 <table-dilation-2> dilation (degree)

friction-2 <table-friction-2> friction (degree)

joint segment 1

cohesion <table-cohesion> cohesion

joint-dilation <table-joint-dilation> dilation (degree)

joint-friction <table-joint-friction> friction (degree)

joint segment 2

joint-cohesion-2 <table-joint-cohesion> cohesion

joint-dilation-2 <table-joint-dilation-2> dilation (degree)

joint-friction-2 <table-joint-friction-2> friction (degree)

UDEC Version 7.0



1 - 76 Constitutive Models

1.6.6 Double-Yield Model

Permanent volume changes caused by the application of isotropic pressure are taken into account
in this model by including, in addition to the shear and tensile failure envelopes in the strain-
softening/hardening model, a volumetric yield surface (or “cap”). For simplicity, the cap surface,
defined by the “cap pressure” pc > 0, is independent of shear stress; it consists of a vertical line on
a plot of shear stress versus mean stress. The hardening behavior of the cap pressure is activated
by volumetric plastic strain, and follows a piecewise-linear law prescribed in a user-supplied table
(like that described in Section 1.6.4.2). The tangential bulk and shear moduli evolve as plastic
volumetric strain takes place according to a special law defined in terms of a factor, R, assumed to
be constant, and defined as the ratio of elastic bulk modulus to plastic bulk modulus.

Only two material parameters and a table are required in addition to those associated with the
strain-softening model:

(1) the initial value ofpc, which corresponds to the maximum mean pressure that the material
has experienced in the past;

(2) the value of R, greater than unity, which controls the slope of the stress-strain curve on
volumetric unloading (the “swelling” line, in soil mechanics terms); and

(3) the table representation of the “hardening curve,” which relates cap pressure,pc, to plastic
volume strain, epv .

Hence, any laboratory-determined hardening behavior may be modeled within the constraints im-
posed by a two-parameter model.

1.6.6.1 Incremental Elastic Law

In the UDEC implementation of this model, principal stresses σ1, σ2, σ3 are used, the out-of-plane
stress, σzz, being recognized as one of these. The principal stresses and principal directions are
evaluated from the stress tensor components, and ordered so that (recall that compressive stresses
are negative)

σ1 ≤ σ2 ≤ σ3 (1.157)

The corresponding principal strain increments �e1,�e2,�e3 are decomposed:

�ei = �eei +�e
p
i i = 1, 3 (1.158)

where the superscripts e and p refer to elastic and plastic parts, respectively, and the plastic compo-
nents are nonzero only during plastic flow. (Note that extensional strains are positive.) It is assumed
that the plastic contributions of shear, tensile and volumetric yielding are additive, so we may write

�e
p
i = �e

ps
i +�e

pt
i +�e

pv
i (1.159)
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where the superscripts ps , pt and pv stand for plastic shear, plastic tensile and plastic volumetric
strain. By convention in this section, the symbol �e is used to refer to the minus volumetric strain
increment (�e1 +�e2 +�e3) with plastic part�ep and elastic part�ee. The symbol�epv refers
to minus the value of the plastic volumetric strain (�epv1 +�e

pv

2 +�e
pv

3 ).

The incremental expression of Hooke’s law in terms of principal stress and strain has the form

�σ1 = α1�e
e
1 + α2(�e

e
2 +�ee3)

�σ2 = α1�e
e
2 + α2(�e

e
1 +�ee3) (1.160)

�σ3 = α1�e
e
3 + α2(�e

e
1 +�ee2)

where α1 = Kc + 4Gc/3, α2 = Kc − 2Gc/3, and Kc and Gc are the current tangential bulk and
shear moduli, defined according to the following considerations.

Consider an isotropic compression test with increasing pressure, pc. As the material becomes
more compact, its plastic stiffness (dpc/depv) usually increases; it seems reasonable that the elastic
stiffness will also increase, since the grains are being forced closer together. A simple rule is
adopted in this model, whereby under general loading conditions the incremental elastic stiffness,
Kc, is a constant factor, R, multiplied by the current incremental plastic stiffness. The values of
bulk and shear modulus, K and G, supplied by the user, are taken as upper limits to Kc and Gc,
and it is assumed that the ratio Kc/Gc remains constant and equal to K/G. Using incremental
notation, this law is defined by the relations

Kc = R
�pc

�epv
Kc := min(Kc,K)

(1.161)

Gc = G
Kc

K

where the factor R is given, and �pc/�epv is the current slope of the table of pc values.

The type of behavior exhibited by the double-yield model is illustrated in Figure 1.20, which shows a
nonlinear volumetric loading curve with several unloading excursions; these excursions are elastic,
with slope related by R to the plastic stiffness at the point of unloading.
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Figure 1.20 Elastic volumetric loading/unloading paths

1.6.6.2 Yield and Potential Functions

The shear and tensile yield functions, referred to as f s and f t , have the form

f s = σ1 − σ3Nφ + 2c
√
Nφ (1.162)

f t = σ t − σ3 (1.163)

where

Nφ = (1 + sin φ)/(1 − sin φ)

and φ is the friction angle, c is the cohesion and σ t is the tensile strength.

The volumetric yield function, f v , is defined as

f v = 1

3

(
σ1 + σ2 + σ3

) + pc (1.164)

where pc is the cap pressure.
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The shear potential function, gs , corresponds to a nonassociated flow rule, and the tensile and
volumetric potential functions, gt and gv , correspond to associated laws. They have the form

gs = σ1 − σ3Nψ

gt = −σ3 (1.165)

gv = 1

3

(
σ1 + σ2 + σ3

)
where

Nψ = (1 + sinψ)/(1 − sinψ)

and ψ is the dilation angle.

1.6.6.3 Hardening/Softening Parameters

The shear and volume yield surfaces can harden (or soften), and the tensile yield surface can soften,
according to hardening rules that are specified by look-up tables (see Section 1.6.4.2). Entry to the
tables is by hardening parameters that record some measure of accumulated plastic strain. In shear
and tension, the hardening parameter incremental forms are

�eps =
{

1

2

(
�e

ps

1 −�e
ps
m

)2 + 1

2

(
�e

ps
m

)2 + 1

2

(
�e

ps

3 −�e
ps
m

)2
} 1

2

�ept = e
pt

3 (1.166)

where

�e
ps
m = 1/3

(
�e

ps

1 +�e
ps

3

)
�e

ps
j , j = 1, 3 and �ept3 are plastic shear and tensile strain increments in the principal directions.

In the volumetric direction, the hardening parameter increment is

�epv = |�epv1 +�e
pv

2 +�e
pv

3 | (1.167)

where �epvj , j = 1, 3 are plastic volumetric strain increments in the principal directions.

These hardening parameters are used in the tables to determine new values of friction, cohesion,
dilation, tensile strength and cap pressure. The current bulk and shear moduli are also calculated
from the table values as defined by Eq. (1.161).
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1.6.6.4 Plastic Corrections

Let the superscript I be used to represent the elastic guess, obtained by adding to the old stresses,
σOij , elastic increments computed using the total strain increments. In principal axes we then have

σ I1 = σO1 + α1�e1 + α2(�e2 +�e3)

σ I2 = σO2 + α1�e2 + α2(�e1 +�e3) (1.168)

σ I3 = σO3 + α1�e3 + α2(�e1 +�e2)

In the UDEC implementation, shear yield is detected if f s(σ I1 , σ
I
3 ) < 0, volumetric yield if

fv(σ
I
1 , σ

I
2 , σ

I
3 ) < 0, and tensile yield if f t (σ I3 ) < 0. Corresponding plastic corrections are

evaluated using the following techniques.

We first consider the case where tensile failure is not detected for the step, but both shear and
volumetric yield conditions are exceeded. Using Eqs. (1.158) and (1.159), the principal strain
increments may be expressed as

�ei = �eei +�e
ps
i +�e

pv
i i = 1, 3 (1.169)

The flow rules for shear and volumetric yielding are

�e
ps
i = λs

∂gs

∂σi

�e
pv
i = λv

∂gv

∂σi
(1.170)

where i = 1, 3. Using Eq. (1.165), these expressions become, after differentiation,

�e
ps

1 = λs

�e
ps

2 = 0

�e
ps

3 = −λsNψ (1.171)

and
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�e
pv

1 = 1

3
λv

�e
pv

2 = 1

3
λv

�e
pv

3 = 1

3
λv (1.172)

Substituting in Eq. (1.169), we obtain

�ee1 = �e1 − λs − λv/3

�ee2 = �e2 − λv/3 (1.173)

�ee3 = �e3 + λsNψ − λv/3

With these expressions for the elastic strain increments, Hooke’s incremental equations yield (see
Eq. (1.160))

σN1 = σ I1 − λs(α1 − α2Nψ)− λvK

σN2 = σ I2 − α2λ
s(1 −Nψ)− λvK (1.174)

σN3 = σ I3 − λs(α2 − α1Nψ)− λvK

where σ Ii , i = 1, 3 are the initial trial stresses in Eq. (1.168), and σNi = σOi + �σi , i = 1, 3 are
the new principal stresses for the step.

To determine the multipliers λs and λv , we require that if shear and volumetric yielding occur, the
new stresses lie on both yield surfaces, and we must havef s(σN1 , σ

N
3 ) = 0, andf σ (σN1 , σ

N
2 , σ

N
3 ) =

0. Substituting Eq. (1.174) for σi, i = 1, 3 in Eqs. (1.162) and (1.164), and solving for λs , we obtain

λs = f sI − f vI (1 −Nφ)

α1 − α2Nψ − α2Nφ + α1NφNψ −K(1 −Nφ)(1 −Nψ)
(1.175)

Hence,

λv = f vI

K
− λs(1 −Nψ) (1.176)
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In these equations, the notation f I stands for the function f evaluated for the initial trial stresses.

Eqs. (1.175) and (1.176) can now be used to evaluate the new stresses from Eq. (1.174). These
stresses simultaneously satisfy both yield conditions and both flow rules.

If the element is only yielding in shear, then

λv = 0

λs = f sI

α1 − α2Nψ − α2Nφ + α1NφNψ
(1.177)

If the element is only yielding in volume, then

λs = 0

λv = f vI

K
(1.178)

Eq. (1.177) or Eq. (1.178) may be used in Eq. (1.174), as appropriate, to compute new stresses.

We now consider the case where tensile failure is detected by the condition f t (σ I3 ) < 0. If
volumetric failure is not detected, we use the same technique and stress corrections as described
in the Mohr-Coulomb model. If volumetric failure is detected in addition to tensile failure, then
either f s(σ I1 , σ

I
3 ) ≤ 0 or f s(σ I1 , σ

I
3 ) > 0. We begin by assuming that all three yield conditions

are exceeded. We assume that the plastic contributions of shear, volumetric and tensile yielding are
additive – i.e.,

�ei = �eei +�e
ps
i +�e

pv
i +�e

pt
i i = 1, 3 (1.179)

The flow rule for tensile yielding has the form

�e
pt
i = λt

∂gt

∂σi
i = 1, 3 (1.180)

Using Eq. (1.165), these expressions become, after partial differentiation,

�e
pt

1 = 0

�e
pt

2 = 0 (1.181)

�e
pt

3 = −λt
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Using the same reasoning as above, and Eqs. (1.171) and (1.172) for the shear and volumetric flow
rule, we obtain

σN1 = σ I1 − λs(α1 − α2Nψ)− λvK + λtα2

σN2 = σ I2 − α2λ
s(1 −Nψ)− λvK + λtα2 (1.182)

σN3 = σ I3 − λs(α2 − α1Nψ)− λvK + λtα1

The multipliers λs , λv and λt are determined by solving the system of three equations:
f s(σN1 , σ

N
3 ) = 0, f v(σN1 , σ

N
2 , σ

N
3 ) = 0 and f t (σN3 ) = 0. This gives

λs = f tI (1 + 2Nφ)+ 3f vI − 2f sI

α2 − α1

λv = f vI

K
+ −3(1 +Nφ)f

tI − 6f vI + 3f sI

α2 − α1
(1.183)

λt = −f tI [Nψ(1 + 2Nφ)+ 2 +Nφ] − 3(1 +Nψ)f
vI + (1 + 2Nψ)f sI

α2 − α1

Substitution of those expressions in Eq. (1.182) yields

σN1 = σ tNφ − 2c
√
Nφ

σN2 = −3pc − σ t (1 +Nφ)+ 2c
√
Nφ (1.184)

σN3 = σt

If only tensile and volumetric yield are detected, then λs = 0 in Eq. (1.182). The constants λv and
λt are determined by requiring that both conditions, f v(σN1 , σ

N
2 , σ

N
3 ) = 0 and f t (σN3 ) = 0, be

fulfilled. After some manipulation, we obtain

λv = α1f
vI +Kf tI

K(α1 −K)

λt = f vI + f tI

α1 −K
(1.185)

Substitution of those expressions in Eq. (1.182) gives

UDEC Version 7.0



1 - 84 Constitutive Models

σN1 = σ I1 − 3f vI + f tI

2

σN2 = σ I2 − 3f vI + f tI

2
(1.186)

σN3 = σt

1.6.6.5 Implementation Procedure

Hardening and softening behaviors for the cohesion, friction and dilation in terms of the shear
parameter eps (see Eq. (1.166)) are provided by the user in the form of tables. Softening of the
tensile strength is described in a similar manner, using the parameter ept (see Eq. (1.166)). In turn,
the variation of cap pressure is specified in a table in terms of the parameter epv (see Eq. (1.167)).
Each table contains pairs of values: one for the parameter and one for the corresponding property
value. It is assumed that the property varies linearly between two consecutive parameter entries in
the table.

In the implementation of the double-yield model in UDEC, new stresses for the step are computed
using the current values of the model properties. In this process, an elastic guess σ Iij is first
computed by, adding to the old stress components, increments calculated by application of Hooke’s
law to the total strain increment for the step. Principal stresses σ I1 , σ

I
2 , σ

I
3 and corresponding

principal directions are calculated and ordered. If these stresses violate the composite yield criterion,
corrections are applied to the elastic guess as described in Section 1.6.6.4 to give the new stress
state. The stress tensor components in the system of reference axes are then calculated from the
principal values by assuming that the principal directions have not been affected by the occurrence
of a plastic correction.

Plastic strain increments are evaluated from Eqs. (1.171), (1.172) and (1.181), using relevant ex-
pressions of λs , λt and λv for the mode of failure taking place. Zone hardening increments are
then calculated as the surface average of values obtained from Eqs. (1.166) and (1.167) for all
triangles involved in the zone. The hardening parameters are updated, and new zone properties for
cohesion, friction, dilation, tensile strength and cap pressure are evaluated by linear interpolation
in the tables. New elastic constants are derived from the cap pressure table using Eq. (1.161). All
of these properties are stored for use in the next step. The hardening or softening lags one timestep
behind the corresponding plastic deformation. In an explicit code, this error is small because the
steps are small.

For a material with friction, the maximum value of the tensile strength is evaluated from Eq. (1.62),
using the new cohesion and friction angle. This value is retained by the code if it is smaller than
the tensile strength updated from the table.
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1.6.6.6 Choice of Volumetric Properties

The “hardening curve” and ratio, R, of elastic bulk modulus to plastic bulk modulus are volumetric
properties that may be derived from the results of a triaxial test in which axial stress and confining
pressure, p, are kept equal. This test, for which dep = depv , is recommended because it is best
to determine the parameters related to a particular mode of failure from a test which only involves
that failure mode.

p

e

tan K-1
c

dep dee

de

dp
tan -1 hKc

h+Kc

R= dep

dee

h= dep

dpc

K =c

dp
dee((

Figure 1.21 Isotropic consolidation test

Consider the experimental graph of minus mean stress (pressure) versus minus volumetric strain for
an increasing stress level, with a small unloading excursion, obtained from such a test and presented
in Figure 1.21. The volumetric strain increment, de, at a point of the main loading path (assuming
that we are above any initial pre-consolidation stress level) is composed of an elastic part, dee, and
a plastic part, dep. (Recall that in this section, de, dee and dep refer to minus the value of the
volumetric strain.) The observed tangent modulus may be expressed as

dp

de
= hKc

h+Kc
(1.187)

where h is the plastic modulus, Kc is the elastic modulus and, by definition,
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h = dpc

dep

Kc = dp

dee
(1.188)

With the preceding notation convention, the volumetric property R may be defined as

R = Kc/h (1.189)

and Eq. (1.187) becomes

dp

de
= Kc

1 + R
(1.190)

Expressing R from this relation, we obtain

R = Kc

dp/de
− 1 (1.191)

Values for dp/de and Kc can be estimated from main loading and unloading increments on the
graph. Hence, R can be calculated from Eq. (1.191). Note that, in the context of this model, the
ratio R is assumed to be constant. Using that Kc = Rh and h = dpc/de

p in Eq. (1.187), we may
write, after some manipulation,

dpc

dep
= h =

(
1 + R

R

)
dp

de
(1.192)

From this, it follows that values of pc for a particular ep can be obtained, to the first approximation,
by multiplying the value p on the graph corresponding to e = ep by the ratio (1 + R)/R. For
example, if R = 5, then the graph curve must be scaled by a factor of 1.2 to convert it to table
values, assuming no overconsolidation.

To be sure that input parameters are reasonable, a single-element test should be done with UDEC,
exercising the double-yield model over stress paths similar to those of the physical tests, and plotting
similar graphs.

As an illustration, the data file in Example 1.4 exercises the double-yield model for a material that
exhibits a response eleven times stiffer upon unloading than loading.
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Example 1.4 Exercising the double-yield model

model new
;file: dy.dat
model title ’Double-Yield’
block config axisymmetry
block tolerance corner-round-length 0.01
block create polygon 0 0 0 1 1 1 1 0
block zone gen edge 1
block zone group ’mat1’
block zone cmodel assign double-yield density 1E3 bulk-maximum 1.11E9 ...

shear 5.077E8 cohesion 1E10 tension 1E10 table-pr-cap 1 multiplier 10 ...
range group ’mat1’

table 1 add 0 0 1 1.1e7
block gridpoint apply velocity-x 0 range pos-x -0.1 0.1 pos-y 0 1
block gridpoint apply velocity-y 0 range pos-x 0 1 pos-y -0.1 0.1
block gridpoint apply velocity-y -5.35e-3 range pos-x 0 1 pos-y 0.9 1.1
block gridpoint apply velocity-x -5.35e-3 range pos-x 0.9 1.1 pos-y 0 1
fish define _syy

count = 0
_tsyy = 0
ib = block.head
iz = block.zone(ib)
loop while iz # 0

_tsyy = _tsyy + block.zone.stress.yy(iz)
iz = block.zone.next(iz)
count = count + 1

endloop
_syy = -_tsyy / count
_ydis = -block.gp.disp.y(block.gp.near(0,1))

end
fish history @_syy
fish history @_ydis
block cycle 1000
block gridpoint apply velocity-y 5.35e-4 range pos-x 0 1 pos-y 0.9 1.01
block gridpoint apply velocity-x 5.35e-4 range pos-x 0.9 1.1 pos-y 0 1
block cycle 900
hist name 1 label ’Average vertical stress’
hist name 2 label ’Vertical displacement’

return

The loading tangent modulus, dp/de, observed in the physical test was constant and equal to 10
MPa. The slope of unloading increments corresponded to a value Kc = 110 MPa. To define
the volumetric properties of the numerical model, we substitute those values in Eq. (1.191) and
find that R = 10. As can be seen from Eq. (1.192), the hardening curve has a constant slope
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corresponding to dpc/dep = h = 11 MPa. The hardening table is derived from this result,
assuming no overconsolidation.

Note that the input value for bulk modulus,K , must be higher thanKc (see Eq. (1.161)). The input
shear modulus controls the ratio of G/K . In this example,

Gc = G
Kc

K
= 50.77 MPa

and the Poisson’s ratio is

v = 3Kc − 2Gc
2(3Kc +Gc)

= 0.3

Results of the numerical test are presented in the plot of minus vertical stress versus minus vertical
strain in Figure 1.22. The loading slope is 10 MPa, and the unloading slope is eleven times stiffer,
as expected.

Figure 1.22 Single-element test in which unloading is eleven times stiffer than
loading

The maximum elastic moduli, bulk-maximum and shear-maximum, should be estimated for the
maximum pressure likely to be produced in the model. They should not be set larger than this
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because mass scaling (for a stable timestep) is calculated on the basis of the moduli. Setting
them too high will give rise to a sluggish response (e.g., the model may be slow to converge to a
steady-state solution). The elastic moduli also act as a limit on plastic moduli.

If a material to be modeled has experienced some initial compaction (i.e., it is overconsolidated),
then pc may be set to this “pre-consolidation” pressure. In this case, ep must also be set, in order to
be consistent with pc and the given table (use block zone cmodel property model strain-volumetric-
plastic to set ep).
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1.6.6.7 block zone cmodel Command and Property Keywords

Double-Yield – block zone cmodel assign double-yield

(1) bulk maximum elastic bulk modulus, K
(2) cohesion cohesion, c
(3) density mass density, ρ
(4) dilation dilation angle, ψ
(5) friction angle of internal friction, φ
(6) multiplier multiplier on current plastic cap modulus to give elastic bulk

and shear moduli, R
(7) pressure-cap current intersection of volumetric yield surface (cap) with

pressure (mean stress) axis, pc
(8) shear maximum elastic shear modulus, G
(9) table-cohesion number of table relating cohesion to plastic shear strain
(10) table-dilation number of table relating dilation angle to plastic shear strain
(11) table-friction number of table relating friction angle to plastic shear strain
(11) table-pressure-cap number of table relating cap pressure to plastic

volumetric strain
(12) table-tension number of table relating tensile limit to plastic tensile strain
(13) tension tension limit, σ t

The strain-hardening/softening behavior is controlled by the variation in friction, cohesion and
dilation as a function of plastic shear strain, and tension limit as a function of plastic tensile strain,
given by a specified table of values. The variation in cap pressure is a function of plastic volumetric
strain. Note that if table numbers are given as 0 (default), the properties will take the values given
(i.e., with cohesion, dilation, friction, tension or pressure-cap keyword).

The following properties can be printed, plotted or accessed via FISH.
(1) state plastic state*
(2) strain-shear-plastic accumulated plastic shear strain
(3) strain-tension-plastic accumulated plastic tensile strain
(4) strain-volumetric-plastic accumulated plastic volumetric strain

* plastic state codes for double-yield model: (1) currently at yield in shear; (2) currently at yield
in tension; (4) shear yield in past; (8) tension yield in past; (256) current volumetric yield; (512)
volumetric yield in past.
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1.6.7 Modified Cam-Clay Model

The modified Cam-clay model is an incremental hardening/softening elastoplastic model. Its fea-
tures include a particular form of nonlinear elasticity, and a hardening/softening behavior governed
by volumetric plastic strain (“density” driven). The failure envelopes are similar in shape, and
correspond to ellipsoids of rotation about the mean stress axis in the principal stress space. The
shear flow rule is associated; no resistance to tensile mean stress is offered in this model. See
Roscoe and Burland (1968) and Wood (1990) for detailed discussions on the modified Cam-clay
model. (For convenience, we drop the qualifier “modified” in the following discussion. Recall that
all models are expressed in terms of effective stresses. In particular, all pressures referred to in this
section are effective pressures.)

1.6.7.1 Incremental Elastic Law

The Cam-clay model is expressed in terms of three variables: the mean effective pressure, p;
the deviatoric stress, q; and the specific volume, v. In the UDEC implementation of this model,
principal stresses σ1, σ2, σ3 are used, the out-of-plane stress, σzz, being recognized as one of these.
(By convention, traction and dilation are positive.)

The generalized stress components p and q may be expressed in terms of principal stresses:

p = −1

3
(σ1 + σ2 + σ3)

q = 1√
2

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2 (1.193)

(Note that q = √
3J2, where J2 is the second invariant of the effective stress deviator tensor.)

The incremental strain variables associated with −p and q are the volumetric strain increment,�e,
and distortional strain increment, �eq , and we have

�e = �e1 +�e2 +�e3

�eq =
√

2

3

√
(�e1 −�e2)

2 + (�e2 −�e3)
2 + (�e1 −�e3)

2 (1.194)

where �ej , j = 1, 3 are principal strain increments. The principal strain increments may be
decomposed into elastic and plastic parts so that

�ei = �eei +�e
p
i i = 1, 3 (1.195)

The specific volume v is defined as
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v = V

Vs
(1.196)

where Vs is the volume of solid particles (assumed incompressible) contained in a volume, V , of
soil. The incremental relation between volumetric strain, e, and specific volume has the form

�e = �v

v
(1.197)

Starting with an initial specific volume, v0, we may thus write, for small volumetric strain incre-
ments,

v = v0(1 + e) (1.198)

where e is the current accumulated volumetric strain.

The incremental expression of Hooke’s law in principal axes may be expressed in the form

�σ1 = α1�e
e
1 + α2(�e

e
2 +�ee3)

�σ2 = α1�e
e
2 + α2(�e

e
1 +�ee3) (1.199)

�σ3 = α1�e
e
3 + α2(�e

e
1 +�ee2)

where α1 = K + 4G/3; and

α2 = K − 2G/3.

Alternatively, using deviatoric parts of incremental stress and strain tensors, we may write

�si = 2G�εei i = 1, 3
−�p = K�ee (1.200)

where �si = �σi +�p;
�εei = �eei −�ee/3; and
�ee = �ee1 +�ee2 +�ee3.
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In the Cam-clay model, the tangential bulk modulus, K , in the volumetric relation Eq. (1.200)
is updated to reflect a nonlinear law derived experimentally from isotropic compression tests.
The results of a typical isotropic compression test are presented in the semi-logarithmic plot of
Figure 1.23.

A

B
1

κ

ln pln p1

1
λswelling lines

normal
consolidation line

v

vκ
B

vκ
A

vλ

Figure 1.23 Normal consolidation line and unloading-reloading (swelling)
line for an isotropic compression test

As the normal consolidation pressure, p, increases, the specific volume, v, of the material decreases.
The point representing the state of the material moves along the normal consolidation line defined
by the equation

v = vλ − λ ln
p

p1
(1.201)

where λ* and vλ are two material parameters, and p1 is a reference pressure. (Note that vλ is the
value of the specific volume at the reference pressure.)

* λ is used by Wood (1990) to define the slope of the normal consolidation line. It should not
be confused with the plastic (volumetric) multiplier, λs , used in the plasticity flow rule given in
Section 1.6.7.3.
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An unloading-reloading excursion, from point A or B on the figure, will move the point along an
elastic swelling line of slope κ , back to the normal consolidation line where the path will resume.
The equation of the swelling lines has the form

v = vκ − κ ln
p

p1
(1.202)

where κ is a material constant, and the value of vκ for a particular line depends on the location of
the point on the normal consolidation line from which unloading was performed.

The recoverable change in specific volume�ve may be expressed in incremental form after differ-
entiation of Eq. (1.202):

�ve = −κ �p
p

(1.203)

After division of both members by v, and comparing with Eq. (1.197), we may write

−�p = vp

κ
�ee (1.204)

In the Cam-clay model it is assumed that any change in mean pressure is accompanied by elastic
change in volume according to the above expression. Comparison with Eq. (1.200) hence suggests
the following expression for the tangent bulk modulus of the Cam-clay material:

K = vp

κ
(1.205)

Under more general loading conditions, the state of a particular point in the medium might be
represented by a point, such asA, located below the normal consolidation line in the (v, lnp) plane
(see Figure 1.24). By virtue of the law adopted in Eq. (1.203), an elastic path from that point
proceeds along the swelling line through A.
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A
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Δve Δvp
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Figure 1.24 Plastic volume change corresponding to an incremental consol-
idation pressure change

The specific volume and mean pressure at the intersection of swelling line and normal consolidation
line are referred to as (normal) consolidation (specific) volume and (normal) consolidation pressure:
vAc and pAc , in the case of pointA. Consider an incremental change in stress bringing the point from
state A to state A′. At A′ there is a corresponding consolidation volume, vA

′
c , and consolidation

pressure, pA
′

c . The increment of plastic volume change, �vp, is measured on the figure by the
vertical distance between swelling lines (associated with pointsA andA′), and we may write, using
incremental notation,

�vp = −(λ− κ)
�pc

pc
(1.206)

After division of the left and right member by v, we obtain, comparing with Eq. (1.197),

�ep = −λ− κ

v

�pc

pc
(1.207)

Hence, whereas elastic changes in volume occur whenever the mean pressure changes, plastic
changes of volume occur only when the consolidation pressure changes.
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1.6.7.2 Yield and Potential Functions

The yield function corresponding to a particular value pc of the consolidation pressure has the form

f = q2 +M2p(p − pc) (1.208)

where M is a material constant. The yield condition f = 0 is represented by an ellipse with
horizontal axis, pc, and vertical axis, Mpc, in the (q, p) plane (see Figure 1.25). Note that the
ellipse passes through the origin. Hence, the material in this model is not able to support an
all-around tensile stress.

The failure criterion is represented in the principal stress space by an ellipsoid of rotation about
the mean stress axis (any section through the yield surface at constant mean effective stress, p, is a
circle).

The potential function g corresponds to an associated flow rule and we have

g = q2 +M2p(p − pc) (1.209)

-e >0p

-e <0p cri
tic

al s
tate lin

e

plastic compaction

plastic dilation

ppc pcp =cr 2

q

q =Mcr

pc

2

Figure 1.25 Cam-clay failure criterion in UDEC

UDEC Version 7.0



BLOCK CONSTITUTIVE MODELS 1 - 97

1.6.7.3 Plastic Corrections

The flow rule used to describe plastic flow has the form

�e
p
i = λs

∂g

∂σi
i = 1, 3 (1.210)

where λs is a parameter whose magnitude remains to be defined.

Using Eq. (1.209) for g, these expressions give, after partial differentiation,

�e
p

1 = λsca

�e
p

2 = λscb (1.211)

�e
p

3 = λscc

where

ca = M2

3
(2p − pc)+ (σ1 − σ2)+ (σ1 − σ3)

cb = M2

3
(2p − pc)+ (σ2 − σ1)+ (σ2 − σ3) (1.212)

cc = M2

3
(2p − pc)+ (σ3 − σ1)+ (σ3 − σ2)

The elastic strain increments may be expressed from Eq. (1.195) as total increments minus plastic
increments. In further using Eq. (1.211), the elastic laws in Eq. (1.199) become

�σ1 = α1�e1 + α2(�e2 +�e3)

− λs [α1ca + α2(cb + cc)]
�σ2 = α1�e2 + α2(�e1 +�e3)

− λs [α1cb + α2(ca + cc)] (1.213)
�σ3 = α1�e3 + α2(�e1 +�e2)

− λs [α1cc + α2(ca + cb)]

Let the new and old stress states be referred to by the superscripts N and O , respectively. Then, by
definition,
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σNi = σOi +�σi i = 1, 3 (1.214)

Substitution of Eq. (1.213) gives

σN1 = σ I1 − λs [α1ca + α2(cb + cc)]

σN2 = σ I2 − λs [α1cb + α2(ca + cc)] (1.215)

σN3 = σ I3 − λs [α1cc + α2(ca + cb)]

where the superscript I is used to represent the elastic guess, obtained by adding to the old stresses,
elastic increments computed using the total strain increments – i.e.,

σ I1 = σO1 + α1�e
e
1 + α2(�e

e
2 +�ee3)

σ I2 = σO2 + α1�e
e
2 + α2(�e

e
1 +�ee3) (1.216)

σ I3 = σO3 + α1�e
e
3 + α2(�e

e
1 +�ee2)

The parameter λs may now be defined by requiring that the new stress point be located on the yield
surface. Substitution of σNi , as given by Eq. (1.215) for σi , i = 1, 3 in f = 0 give, after some
manipulations (see Eq. (1.208)),

aλs
2 + bλs + c = 0 (1.217)

where

a =2G2
[
(ca − cb)

2 + (cb − cc)
2 + (cc − ca)

2
]

+M2K2(ca + cb + cc)
2

b = − 2G
[
(σ I1 − σ I2 )(ca − cb)+ (σ I2 − σ I3 )(cb − cc)+ (σ I3 − σ I1 )(cc − ca)

]
−M2K(ca + cb + cc)(2p

I − pc) (1.218)

c =f (qI , pI )

Of the two roots of this equation, the one with the smallest modulus must be retained.

Note that at the critical point corresponding topcr = pc/2, qcr = Mpc/2 in Figure 1.25, the normal
to the yield curve, f = 0, is parallel to the q-axis. Since the flow rule is associated, the plastic
volumetric strain rate component vanishes there. As a result of the hardening rule Eq. (1.207),
the consolidation pressure, pc, will not change. The corresponding material point has reached
the critical state, in which unlimited shear strains occur with no accompanying change in specific
volume or stress level.
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1.6.7.4 Hardening/Softening Rule

The size of the yield curve is dependent on the value of the consolidation pressure, pc (see
Eq. (1.208)). This pressure is a function of the plastic volume change, and varies with the specific
volume, as indicated in Eq. (1.207).

The consolidation pressure, pc, corresponding to new values for v and p may easily be found by
intersection of the consolidation line with the swelling line through (v, lnp). This gives, using
Eqs. (1.201) and (1.202),

pc = p1e
(vλ−vκ )/(λ−κ) (1.219)

where

vκ = v + κ ln
p

p1
(1.220)

1.6.7.5 Initial Stress State

The Cam-clay model in UDEC is only applicable to material in which the stress state corresponds
to a compressive mean effective stress. This model is not designed to predict the behavior of
material in which this condition is not met. In particular, the initial state of the material (just before
application of the Cam-clay model) must be consistent with this requirement. The initial state may
be specified using the pressure-initial command, or may be the result of a run in which another
constitutive model has been used. In any case, the initial effective pressure, defined as p0, must be
positive throughout the medium.

1.6.7.6 Overconsolidation Ratio

The overconsolidation ratio, R, is defined as the ratio of initial pre-consolidation pressure to initial
pressure – i.e.,

R = pc0

p0
(1.221)

This ratio is useful in characterizing the behavior of Cam-clay material.
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1.6.7.7 Implementation Procedure

In the implementation of the Cam-clay model in UDEC, an elastic guess, σ Iij , is first computed by
adding to the old stress components, increments calculated by application of Hooke’s law to the
total strain increment for the step. The principal stresses σ Ii , i = 1, 3 and corresponding principal
directions are then evaluated.

Elastic guesses for the mean pressure, pI , and deviator stress, qI , are calculated using Eq. (1.193).
If these stresses violate the yield criterion and f (qI , pI ) < 0 (see Eq. (1.208)), plastic deformation
takes place and the consolidation pressure changes. In this situation, a correction must be applied to
the elastic guess to give the new stress state: new principal stresses are derived from Eqs. (1.212) and
(1.215). These equations use a value for λs corresponding to the root of Eqs. (1.217) and (1.218),
and using the smallest modulus. Note that, in this version of the code, Eq. (1.212) is evaluated
using the elastic guess. However, the error associated with this technique is small, provided the
steps are small. New stress tensor components in the system of reference axes are then evaluated,
assuming the principal directions have not been affected by the occurrence of plastic flow.

Volumetric strain increment,�e, and mean pressure, p, for the zone are computed as average over
all involved triangles (see Eqs. (1.193) and (1.194)). The zone volumetric strain, e, is incremented,
and the zone specific volume, v, updated, using Eq. (1.198). In turn, the new zone consolidation
pressure is calculated from Eq. (1.219), and the tangential bulk modulus is updated using Eq. (1.205).
If a nonzero value for the Poisson’s ratio property is imposed, a new shear modulus is calculated
from the expression G = 1.5(1 − 2ν)K/(1 + ν). Otherwise, G is left unchanged as long as the
condition 0 ≤ ν ≤ 0.5 is satisfied. If it is not, G is assigned a value corresponding to ν = 0 or
ν = 0.5, as appropriate. The new values for the consolidation pressure, and shear and bulk moduli,
are then stored for use in the next timestep. The material properties thus lag one timestep behind
the corresponding calculation. In an explicit code, this error is small because the steps are small.

1.6.7.8 Determination of the Input Parameters

Frictional constant M – M is the ratio of q/pcr at the critical state line. Therefore, a series of
triaxial tests (drained or undrained with pore pressure measurement) can be used to obtain this
constant. These tests should be carried out to large strains to ensure that the final values of pcr and
q are close to the critical state line. The slope of a best-fitting line of q vs pcr will be the parameter
M .

M is related to the effective stress friction angle, φ′, of the Mohr-Coulomb yield function. However,
since the Cam-clay critical state line is dependent on the intermediate stress, σ2, while Mohr-
Coulomb is not, the relation between M and φ′ will be different for different values of σ2 at yield.
(This condition is similar to the relation between Mohr-Coulomb and Drucker-Prager yield functions
– see Section 1.6.1.5.) For triaxial compression tests,

M = 6 sin φ′

3 − sin φ′ (1.222)

while for triaxial extension tests,
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M = 6 sin φ′

3 + sin φ′ (1.223)

The slopes of the normal consolidation and swelling lines (λ and κ) – Ideally, these two param-
eters should be obtained from an isotropically loaded triaxial test (q = 0) with several unloading
excursions. The slope of the normal compression line in a v versus lnp plot will be the parameter
λ. The slope of an unloading excursion in the same plot will be the parameter κ .

These two parameters can also be derived from an oedometer test, making certain assumptions. Let
σv and σH be the vertical and horizontal stresses in an oedometer test. In most oedometer apparatus,
it is not possible to measure the horizontal stresses, σH , so the mean stress, p = (σv + 2σH )/3,
is not known. However, experimental data show that the ratio of horizontal to vertical effective
stresses, K0, is constant during normal compression. Since p = σv(1 + 2K0)/3 along the normal
compression line, the slope of v vs lnp will be equal to the slope of e versus ln σv , where e is the
void ratio = v − 1.

The compression index, Cc, is calculated as the slope of e vs log10(σv). So the parameter λ will be

λ = Cc/ ln(10) (1.224)

Experimental data show that along a swelling line in an oedometer test, K0 is not constant, so an
estimate of κ based on the swelling coefficient, Cs , will only be an approximation:

κ ≈ Cs/ ln(10) (1.225)

In practice, κ is usually chosen in the range of one-fifth to one-third of λ.

Location of the normal consolidation line in the v versus lnp plot – In order to determine the
location of the normal consolidation line in the v versus lnp plot, a point (vλ, lnp1) on this line
must be specified. The obvious way to determine this point is to perform an isotropic triaxial test.
There is an alternative way to determine this point based on the undrained shear strength (for details,
see Britto and Gunn 1987).

The equation of the normal consolidation line is (see Eq. (1.201))

v = vλ − λ ln
p

p1
(1.226)

The specific volume � at the critical state line for p = p1 is given by

� = vλ − (λ− κ)× ln(2) (1.227)
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In a soil, the undrained shear strength, cu, is uniquely related to the specific volume, vcr , by the
equation

cu = Mp1

2
exp

(
� − vcr

λ

)
(1.228)

Thus, the value of � for a given p1, and therefore vλ, can be calculated if the undrained shear
strength for a particular specific volume, vcr , along with the parameters M , λ and κ , is known.

Pre-consolidation pressure, pc0 – The pre-consolidation pressure determines the initial size of the
yield surface in the equation

q2 = M2[p(pc0 − p)] (1.229)

If a sample has been submitted to an isotropic loading path, pc0 will be the maximum past mean
effective stress. If the sample has followed other non-isotropic paths, pc0 has to be calculated from
the maximum previous p and q, using Eq. (1.229).

The maximum vertical effective stress can be calculated from an oedometer test using Casagrande’s
method (for details, see Britto and Gunn 1987). Some hypothesis has to be made about the maximum
horizontal effective stress. A common hypothesis is Jaky’s relation (e.g., see Britto and Gunn 1987),

Knc = σhmax

σvmax
� 1 − sin φ′ (1.230)

whereKnc is the coefficient of horizontal σhmax to vertical σvmax stress at rest for normally consoli-
dated soil. For example, if a soil with an effective friction angle of 20◦ has experienced a maximum
vertical effective stress, σvmax = 1 MPa. Then, using Jaky’s relation,

Knc = 1 − sin 20◦ = 0.658 (1.231)

and the maximum horizontal stress is

σhmax = 0.658 MPa (1.232)
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The maximum values of p and q are

pmax = σvmax + 2σhmax

3
= 0.772 MPa

(1.233)
qmax = σvmax − σhmax = 0.342 MPa

Substituting these two values in the yield function Eq. (1.229), we obtain the pre-consolidation
pressure

pc0 = pmax + q2
max

M2 pmax
= 1.026 MPa (1.234)

Initial values for specific volume v0 and current bulk modulus K – Given an initial effective
pressure, p0, the initial specific volume, v0, must be consistent with the choice of parameters
κ, λ, p1 and pc0. The initial value, v0, is calculated by the code to correspond to the value of
the specific volume corresponding to p0 on the swelling line, through the point on the normal
consolidation line at which p = pc0. From Figure 1.26, it follows that

v0 = vλ − λ ln

(
pc0

p1

)
+ κ ln

(
pc0

p0

)
(1.235)

lnpc0lnp0lnp1 lnp

v0

vλ

v

swelling line

normal consolidation line

pc0

p0

κ ln

pc0

p1

v - lnλ λ

Figure 1.26 Determination of initial specific volume
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The initial value of the current bulk modulus (bulk) may in turn be evaluated using
Eq. (1.205), which gives

K = v0p0

κ
(1.236)

In UDEC, the default values for v0 and K are evaluated using Eqs. (1.235) and (1.236) when the
first step command is issued.

Maximum value of the elastic parameters K and G – In the Cam-clay model, the value of the
current bulk modulus (bulk) changes as a function of the specific volume and the mean stress:

K = vp

κ
(1.237)

The input values of Kmax (bulk) and G (shear) are used in the mass scaling calculation performed
in UDEC, to ensure numerical stability (see Section 1.2.9 in Theory and Background). This
calculation is done once every time a block cycle step command is issued. These input values
should be chosen so as to give an upper bound to the sum (K + 4/3G), as evaluated by the model
between two consecutive block cycle step commands. However, values should not be set too high,
or the model may be slow to converge. They should be selected based on the stress level in the
problem.

G or ν – The modified Cam-clay model in UDEC allows the user to specify either a constant shear
modulus or a constant Poisson’s ratio.

If no Poisson’s ratio is specified, a constant shear modulus equal to the input value is assumed.
Then the Poisson’s ratio will vary as a function of the specific volume and the mean stress:

ν = 3
( vp
κ

) − 2G

6
( vp
κ

) + 2G
(1.238)

If a nonzero Poisson’s ratio is specified, the shear modulus will vary at the same rate as the bulk
modulus in order to maintain a constant Poisson’s ratio:

G = 3
( vp
κ

)
(1 − 2ν)

2 (1 − 2ν)
(1.239)
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1.6.7.9 Oedometer Test

The numerical simulation of an oedometer test on a Cam-clay sample is presented in this example.
It may be shown that, in the framework of the modified Cam-clay model, the stress path for one-
dimensional normal compression corresponds to a straight line in the p-q-plane (see Wood 1990).
The slope of this line, η, may be derived from the expression

η(1 + ν)(1 −�)

3(1 − 2ν)
+ 3η�

M2 − η2
= 1 (1.240)

where ν is the constant Poisson’s ratio for the test � = (λ − κ)/λ, and M, λ and κ are Cam-clay
model properties.

The boundary conditions for the oedometer test are represented in Figure 1.27. In this test, the
ratio, K0, of horizontal to vertical stresses is related to η by the formula

K0 = 3 − η

3 + 2η
(1.241)

y

v v

x

Figure 1.27 Boundary conditions for oedometer test

In soils that have a history of one-dimensional deformation, this ratio is called the “coefficient of
earth pressure at rest.” The coefficientK0 is evaluated numerically using the data file in Example 1.5,
and compared to the analytic value derived from the above expression.
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The simulation is carried out using a single zone of unit dimensions. Several properties are used in
conjunction with the Cam-clay model:

bulk modulus(maximum value), K 50000 Pa
Poisson’s ratio, ν 0.3
frictional constant, M 1.02
slope of normal consolidation line, λ 0.2
slope of elastic swelling line, κ 0.05
reference pressure, p1 1 Pa
specific volume, vλ 3.32

The analytical value of K0 is evaluated using the FISH function c konc. A nonzero initial stress
state is specified with values σyy = −5 Pa and σxx = σzz = K0σyy . The initial value of pc
corresponds to a normally consolidated state, and is calculated using Eq. (1.234). The velocity
components are fixed in the x- and y-directions. A velocity of magnitude 10−5 m/steps is applied
to the top of the model in the negative y-direction for a total of 1000 steps. The ratio of horizontal
to vertical stress is monitored and compared to the analytic prediction for K0. The match is very
good where numerical and analytic solutions coincide, as may be seen in Figure 1.28. The stress
paths in the (σyy, σxx) and (p, q) planes are represented in Figures 1.29 and 1.30; they correspond
to straight line trajectories, as expected.

Example 1.5 Oedometer test on a Cam-clay material

model new
;file: cam_clay.dat
model title ’Cam-Clay’
;------------------------------------------------------------
; Oedometric test on cam-clay sample (drained)
; ’coefficient of earth pressure’ konc: comparison between
; numerical and analytical predictions
; Wood, Soil behaviour and critical soil mechanics, p314-319
;------------------------------------------------------------
block config axisymmetry
block tolerance corner-round-length 0.001
block tolerance minimum-edge-length 0.002
block create polygon 0 0 0 1 1 1 1 0
block zone gen edge 2
; --- model properties ---
block zone group ’mat1’
block zone cmodel assign modified-cam-clay density 1 bulk-maximum 5E4 ...

shear 250 poisson 0.3 kappa 0.05 lambda 0.2 ratio-critical-state 1.02 ...
pressure-reference 1 specific-volume-reference 3.32 ...
range group ’mat1’

;
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; --- boundary conditions ---
block gridpoint apply velocity-x 0
block gridpoint apply velocity-y 0 range pos-x -0.01 1.01 pos-y -0.01 0.01
block gridpoint apply velocity-y -3.167e-3 ...

range pos-x -0.01 1.01 pos-y 0.99 1.01
;
; --- fish functions ---
; ... analytical value for konc ...
fish define c_konc

bi = block.head
zi = block.zone(bi)
c_l = 1. - block.zone.prop(zi,’kappa’)/block.zone.prop(zi,’lambda’)
c_b = 3.*c_l
c_a = (1.+block.zone.prop(zi,’poisson’))*(1.-c_l)/(3.*...

(1.-2.*block.zone.prop(zi,’poisson’)))
m2 = block.zone.prop(zi,’ratio-critical-state’)* ...

block.zone.prop(zi,’ratio-critical-state’)
a1 = -1./c_a
a2 = -(c_a*m2+c_b)/c_a
a3 = m2/c_a
bq = (a1*a1-3.*a2)/9.
br = (a1*(2.*a1*a1-9.*a2)+27.*a3)/54.
aux = br*br-bq*bq*bq
eta = 0.0
if aux > 0.0 then
aux = (math.sqrt(aux)+math.abs(br))ˆ(1./3.)
eta = -math.sgn(br)*(aux+bq/aux)-a1/3.
konc = (3.-eta)/(3.+2.*eta)

else
aux = math.sqrt(-aux)/math.abs(br)
teta= math.atan(aux)+math.pi
aux1 = 2.*math.sqrt(bq)
aux2 = a1/3.
eta1 = -aux1*math.cos((teta)/3.)-aux2
eta2 = -aux1*math.cos((teta+2.*math.pi)/3.)-aux2
eta3 = -aux1*math.cos((teta+4.*math.pi)/3.)-aux2
konc1 = (3.-eta1)/(3.+2.*eta1)
konc2 = (3.-eta2)/(3.+2.*eta2)
konc3 = (3.-eta3)/(3.+2.*eta3)
konc = math.max(konc1,konc2)
konc = math.max(konc,konc3)

end_if
; ... Jaky,s approximate expression for konc = 1 - sin(phi) ...
kjaky = 1.-3.*block.zone.prop(zi,’ratio-critical-state’)/...

(6.+block.zone.prop(zi,’ratio-critical-state’))
end
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; ... initial, normally consolidated state ...
fish define i_state

isyy = -5.0
p_i = -isyy * (1.0 + 2.0 * konc) / 3.
q_i = -isyy * (1.0 - konc)
val = q_i / (block.zone.prop(zi,’ratio-critical-state’)*p_i)
bi = block.head
zi = block.zone(bi)
loop while zi # 0

block.zone.stress.xx(zi) = isyy * konc
block.zone.stress.yy(zi) = isyy
block.zone.stress.zz(zi) = isyy * konc
block.zone.prop(zi, ’pressure-preconsolidation’) = ...

p_i * (1.0 + val * val)
zi = block.zone.next(zi)

endloop
end
;
fish define camclay_ini_p

bi = block.head
zi = block.zone(bi)
loop while zi # 0

mean_p = -(block.zone.stress.xx(zi) + block.zone.stress.yy(zi) + ...
block.zone.stress.zz(zi) )/3. - block.zone.pp(zi)

block.zone.prop(zi, ’pressure-effective’) = mean_p
zi = block.zone.next(zi)

endloop
end
; ... numerical values for p, q, v ...
fish define path

zi = block.zone(block.head)
zoneNum = 0
s1 = 0.0
s2 = 0.0
s3 = 0.0
sp = 0.0
sq = 0.0
loop while zi # 0

s1 = s1 + block.zone.stress.yy(zi)
s2 = s2 + block.zone.stress.zz(zi)
s3 = s3 + block.zone.stress.xx(zi)
sp = sp + block.zone.prop(zi,’pressure-effective’)
sq = sq + block.zone.prop(zi,’stress-deviatoric’)
zoneNum = zoneNum +1
zi = block.zone.next(zi)

endloop

UDEC Version 7.0



BLOCK CONSTITUTIVE MODELS 1 - 109

zi = block.zone(block.head)
s1 = -s1/zoneNum
s2 = -s2/zoneNum
s3 = -s3/zoneNum
k0 = 0.0
if s1 # 0 then

k0 = s3 / s1
end_if
sp = sp/zoneNum
sq = sq/zoneNum
dif = sq / sp - 3.*(1.-k0)/(1.+2.*k0)
sqcr = sp*block.zone.prop(zi,’ratio-critical-state’)
lnp = math.ln(sp)
logsy = math.log(s1)
c_sv = block.zone.prop(zi,’specific-volume’)
void_ratio=c_sv-1.
mk = block.zone.prop(zi,’bulk’)
mg = block.zone.prop(zi,’shear’)
s1konc = s1 * konc

end
;
; ... loading-unloading excursions ...
fish define trip

loop i (1,3)
command

block gridpoint apply velocity-y -5E-5 ...
range pos-x -0.01 10.01 pos-y 9.99 10.01

block cycle 2000
block gridpoint apply velocity-y 5E-6 ...

range pos-x -0.01 10.01 pos-y 9.99 10.01
block cycle 1500
block gridpoint apply velocity-y -5E-6 ...

range pos-x -0.01 10.01 pos-y 9.99 10.01
block cycle 2500

end_command
end_loop

end
;
; --- histories ---
his interval 20
block mechanical history unbalanced-maximum
fish history @path
fish history @sp
fish history @lnp
fish history @logsy
fish history @sq
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fish history @sqcr
fish history @c_sv
fish history @mk
fish history @mg
block gridpoint history displacement-y 0 1
fish history @k0
fish history @konc
fish history @s1
fish history @s3
fish history @s1konc
fish history @dif
fish history @void_ratio
; --- test ---
@c_konc
@i_state
@camclay_ini_p
@trip
block cycle 1000
;plot hold hist 12 cross 13 vs -11 ywin 0 1
;plot hold hist 15 cross 16 vs 14
;plot hold hist 6 vs 3 ywin 1.44 1.58
return
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Figure 1.28 Oedometric test – comparison of numerical and analytical values
for K0

Figure 1.29 Oedometric test – history of vertical versus horizontal stresses
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Figure 1.30 Oedometric test – history of stresses q versus p

UDEC Version 7.0



BLOCK CONSTITUTIVE MODELS 1 - 113

1.6.7.10 block zone cmodel Command and Property Keywords

Modified Cam-Clay – block zone cmodel assign cam-clay

(1) bulk-maximum maximum elastic bulk modulus, Kmax
(2) density mass density, ρ
(3) kappa slope of elastic swelling line, κ
(4) lambda slope of normal consolidation line, λ
(5) poisson Poisson’s ratio, ν
(6) pressure-reference reference pressure, p1

(7) pressure-preconsolidation pre-consolidation pressure, pc
(8) ratio-critical-state frictional constant, M
(9) shear elastic shear modulus, G
(10) specific-volume initial specific volume, v0 (by default, calculated internally)
(11) specifi-volume-reference specific volume at reference pressure, p1, on normal

consolidation line, vλ

If Poisson’s ratio, poisson, is not given, and a nonzero shear modulus, shear mod, is specified,
then the shear modulus remains constant; Poisson’s ratio will change as bulk modulus changes.
If a nonzero poisson is given, then the shear modulus will change as the bulk modulus changes;
Poisson’s ratio remains constant.

The following properties can be printed, plotted or accessed via FISH.

(1) bulk current elastic bulk modulus, K
(2) pressure-effective current mean effective stress, p
(3) accumulated plastic volumetric strain
(4) stress-deviatoric current mean deviatoric stress, q
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1.6.8 Hoek-Brown-PAC Model

The Hoek-Brown failure criterion is an empirical relation that characterizes the stress conditions
that lead to failure in intact rock and rock masses. It has been used very successfully in design
approaches that use limit equilibrium solutions, but there has been little direct use in numerical
solution schemes. Numerical solution methods require full constitutive models, which relate stress
to strain in a general way; in addition to a failure (or yield) criterion, a “flow rule” is also necessary,
in order to provide a relation between the components of strain rate at failure. There have been
several attempts to develop a full constitutive model from the Hoek-Brown criterion (e.g., Pan and
Hudson 1988, Carter et al. 1993 and Shah 1992). These formulations assume that the flow rule has
some fixed relation to the failure criterion, and that the flow rule is isotropic, whereas the Hoek-
Brown criterion is not. In the formulation described here, there is no fixed form for the flow rule;
it is assumed to depend on the stress level, and possibly some measure of damage.*

In what follows, the failure criterion is taken as a yield surface, using the terminology of plasticity
theory. Usually, a failure criterion is assumed to be a fixed, limiting stress condition that corresponds
to ultimate failure of the material. However, numerical simulations of elastoplastic problems allow
continuing the solution after “failure” has taken place, and the failure condition itself may change
as the simulation progresses (by either hardening or softening). In this event, it is more reasonable
to speak of “yielding” than failure. There is no implied restriction on the type of behavior that is
modeled: both ductile and brittle behavior may be represented, depending on the softening relation
used.

1.6.8.1 The General Formulation

The “generalized” Hoek-Brown criterion (Hoek and Brown 1980 and 1998), adopting the convention
of positive compressive stress, is

σ1 = σ3 + σci

{
mb

σ3

σci
+ s

}a
(1.242)

where σ1 and σ3 are the major and minor effective principal stresses, and σci , mb, s and a are
material constants that can be related to the Geological Strength Index and rock damage (Hoek
et al. 2002). For interest, the unconfined compressive strength is given by σc = σci sa , and the
tensile strength by σt = - s σci / mb. Note that the criterion (Eq. (1.242)) does not depend on the
intermediate principal stress, σ2. Thus, the failure envelope is not isotropic.

Assume that the current principal stresses are (σ1,σ2, σ3), and that initial trial stresses (σ t1,σ t2, σ t3)
are calculated by using incremental elasticity:

* UDEC simulations using the Hoek-Brown-PAC model have shown that the model with a stress-
dependent flow rule works well at high confining stress states, but can produce excessive dilation at
low confinement conditions. An alternative formulation, the modified Hoek-Brown model, which
allows the user to input a dilation angle and specify a stress-independent flow rule, is available (see
Section 1.6.9).
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σ t1 = σ1 + E1�e1 + E2(�e2 +�e3) (1.243)

σ t2 = σ2 + E1�e2 + E2(�e1 +�e3)

σ t3 = σ3 + E1�e3 + E2(�e1 +�e2)

where E1 = K + 4G/3 and E2 = K − 2G/3, and (�e1,�e2,�e3) is the set of principal strain
increments. If the yield criterion (Eq. (1.242)) is violated by this set of stresses, then the strain
increments (prescribed as independent inputs to the model) are assumed to be composed of elastic
and plastic parts:

�e1 = �ee1 +�e
p

1

�e2 = �ee2 (1.244)

�e3 = �ee3 +�e
p

3

Note that plastic flow does not occur in the intermediate principal stress direction. The final stresses
(σf1 ,σf2 , σf3 ) output from the model are related to the elastic components of the strain increments.
Hence,

σ
f

1 − σ1 = E1(�e1 −�e
p

1 )+ E2(�e2 +�e3 −�e
p

3 )

σ
f

2 − σ2 = E1�e2 + E2(�e1 −�e
p

1 +�e3 −�e
p

3 ) (1.245)

σ
f

3 − σ3 = E1(�e3 −�e
p

3 )+ E2(�e1 −�e
p

1 +�e2)

Eliminating the current stresses, using Eq. (1.243) and Eq. (1.245),

σ
f

1 = σ t1 − E1�e
p

1 − E2�e
p

3

σ
f

2 = σ t2 − E2(�e
p

1 +�e
p

3 ) (1.246)

σ
f

3 = σ t3 − E1�e
p

3 − E2�e
p

1

We assume the flow rule

�e
p

1 = γ�e
p

3 (1.247)
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where the factor γ depends on stress, and is recomputed at each timestep. Eliminating �ep1 from
Eq. (1.246):

σ
f

1 = σ t1 −�e
p

3 (γE1 + E2)

σ
f

2 = σ t2 −�e
p

3E2(1 + γ ) (1.248)

σ
f

3 = σ t3 −�e
p

3 (γE2 + E1)

At yield, Eq. (1.242) is satisfied by the final stresses. That is,

F = σ
f

1 − σ
f

3 − σci

{
mb
σ
f

3

σci
+ s

}a = 0 (1.249)

By substituting values of σf1 and σf3 from Eq. (1.248), Eq. (1.249) can be solved iteratively (using
Newton’s method or a bisection method) for �ep3 , which is then substituted in Eq. (1.248) to give
the final stresses. The method of solution is described later, but first the evaluation of γ is discussed.

1.6.8.2 Flow Rules

We need to consider an appropriate flow rule, which describes the volumetric behavior of the material
during yield. In general, the flow parameter γ will depend on stress, and possibly history. It is not
meaningful to speak of a “dilation angle” for a material when its confining stress is low or tensile,
because the mode of failure is typically by axial splitting, not shearing. Although the volumetric
strain depends in a complicated way on stress level, we consider certain specific cases for which
behavior is well-known, and determine the behavior for intermediate conditions by interpolation.
Four cases are considered below.

Associated Flow Rule

It is known that many rocks under unconfined compression exhibit large rates of volumetric expan-
sion at yield, associated with axial splitting and wedging effects. The associated flow rule provides
the largest volumetric strain rate that may be justified theoretically. This flow rule is expected to
apply in the vicinity of the uniaxial stress condition (σ3 ≈ 0). An associated flow rule is one in
which the vector of plastic strain rate is normal to the yield surface (when both are plotted on similar
axes). Thus,

�e
p
i = −γ ∂F

∂σi
(1.250)

where the subscripts denote the components in the principal stress directions, and F is defined by
Eq. (1.249). Differentiating this expression, and using Eq. (1.247),
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γaf = − 1

1 + aσci(mbσ3/σci + s)a−1(mb/σci)
(1.251)

Radial Flow Rule

Under the condition of uniaxial tension, we might expect that the material would yield in the
direction of the tensile traction. If the tension is isotropically applied, we imagine (since the test is
almost impossible to perform) that the material would deform isotropically. Both of these conditions
are fulfilled by the radial flow rule, which is assumed to apply when all principal stresses are tensile.
For a flow-rate vector to be coaxial with the principal stress vector, we obtain

γrf = σ1

σ3
(1.252)

Constant-Volume Flow Rule

As the confining stress is increased, a point at which the material no longer dilates during yield is
reached. A constant-volume flow rule is therefore appropriate when the confining stress is above
some user-prescribed level, σ3 = σ cv

3 . This flow rule is given by

γcv = −1 (1.253)

Composite Flow Rule

We propose to assign the flow rule (and, thus, a value for γ ) according to the stress condition. In
the fully tensile region, the radial flow rule (γrf ) will be used. For compressive σ1 and tensile or
zero σ3, the associated flow rule (γaf ) is applied. For the interval 0 < σ3 < σ cv

3 , the value of γ is
linearly interpolated between the associated and constant-volume limits:

γ = 1
1
γaf

+ ( 1
γcv

− 1
γaf
)
σ3
σ cv

3

(1.254)

Finally, when σ3 > σ cv
3 , the constant-volume value, γ = γcv, is used.

Note that if σ cv
3 is set equal to zero, then the model condition approaches a nonassociated flow rule

with a zero dilation angle. If σ cv
3 is set to a very high value relative to σci , the model condition

approaches an associated-flow state.
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1.6.8.3 Implementation Procedure

The equations presented above are implemented using two iterative solvers: a fast Newton’s method
and a slower bisection method. For Newton’s method, one difficulty with the failure criterion
(Eq. (1.249)) is that real values for F do not exist if σ3 < −sσci/mb. During an iteration process,
this condition is likely to be encountered, so it is necessary that the expression for F , and its first
derivatives, be continuous everywhere in stress space. This is fulfilled by adapting the composite
expression

if σ3 ≥ − sσci
mb

then F = σ
f

1 − σ
f

3 − σci

{
mb
σ
f

3

σci
+ s

}a = 0 (1.255)

if σ3 < − sσci
mb

then F = σ
f

1 − σ
f

3 + σci

{
mb
σ
f

3

σci
+ s

}a = 0 (1.256)

To initialize the iteration for Newton’s method, a starting value for �ep3 is taken as the absolute
maximum of all the strain increment components. This value, denoted by �e1, is inserted into
Eq. (1.248), together with the value for γ found from the flow-rule equations, and the resulting
stress values inserted into Eqs. (1.255) and (1.256). The resulting value of F is denoted by F1.
Taking the original value ofF asF0 (and the corresponding plastic strain increment of zero as�e0),
we can estimate a new value of the plastic strain increment using

�e2 = F1�e0 − F0�e1

F1 − F0
(1.257)

From this we find a new value of F (call it F2) and, if it is sufficiently close to zero, the iteration
stops. Otherwise, we set F0 = F1, F1 = F2, �e0 = �e1 and �e1 = �e2, and apply Eq. (1.257)
again.

Tests have shown that for high confining stresses, the Newton scheme converges in one step; at
low confining stresses, up to ten steps are necessary. (The limit built into the Newton scheme is
presently set at 15.)

In tensile conditions, the Newton solver occasionally has problems converging. In this case, a
bisection solver (with a slower convergence rate than the Newton solver) is used. High and low
values for �ep3 are selected and substituted into Eq. (1.248); one results in F < 0 and the other
results in F > 0 in Eq. (1.249). The bisection method searches between these two limits to find
the value of �ep3 that results in F = 0 in Eq. (1.249).
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1.6.8.4 Material Softening

In the Hoek-Brown model, the material properties σci ,mb, s and a are assumed to remain constant,
by default. Material softening, after the onset of plastic yield, can be simulated by specifying
that these mechanical properties change (i.e., reduce the overall material strength) according to
a softening parameter. The softening parameter selected for the Hoek-Brown-PAC model is the
plastic confining strain component, ep3 . The choice of ep3 is based on physical grounds. For yield
near the unconfined state, the damage in brittle rock is mainly by splitting (not by shearing), with
crack normals oriented in the σ3 direction. The parameter ep3 is expected to correlate with the
microcrack damage in the σ3 direction.

The value of ep3 is calculated by summing the strain increment values for �ep3 calculated by
Eq. (1.257). Softening behavior is provided by specifying tables that relate each of the proper-
ties σci , mb, s and a to ep3 . Each table contains pairs of values: one for the ep3 value, and one
for the corresponding property value. It is assumed that the property varies linearly between two
consecutive parameter entries in the table.

A multiplier, μ (denoted as table-multiplier), can also be specified to relate the softening behavior
to the confining stress, σ3. The relation between μ and σ3 is also given in the form of a table. (See
Cundall et al. (2003) for an application of softening parameters.)

1.6.8.5 Triaxial Compression Test

Triaxial compression tests are performed on models composed of Hoek-Brown-PAC material in
UDEC, to verify the stress and strain paths that develop. The triaxial load conditions are illustrated
in Figure 1.31. The triaxial tests are performed on a sample of Hoek-Brown material with properties
of mb = 5, s = 1, a = 0.5, σci = 1.0 and σcv3 = 1.5, and with elastic properties of E = 100 and
ν = 0.35. Compression loading tests are performed under two loading conditions: σ3/σci = 0 and
1.0. The analytical solutions for stress and strain during compression loading are presented by the
plots shown in Figures 1.32 and 1.33.

A single-zone model is constructed in UDEC to simulate the triaxial loading tests. The UDEC results
are compared to the analytical solutions in Figures 1.34 through 1.37. The solutions compare within
1%.

UDEC Version 7.0



1 - 120 Constitutive Models

Figure 1.31 Triaxial compression tests – loading conditions
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Figure 1.32 Triaxial compression tests – a) Hoek-Brown failure envelope; b)
stress-strain plots
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Figure 1.33 Triaxial compression tests – a) confining (lateral) strain versus
axial strain; b) volumetric strain versus axial strain
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Figure 1.34 Triaxial compression test – stress versus axial strain
(σ3/σci = 0)

Figure 1.35 Triaxial compression test – lateral strain versus axial strain
(σ3/σci = 0)
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Figure 1.36 Triaxial compression test – stress versus axial strain
(σ3/σci = 1.0)

Figure 1.37 Triaxial compression test – lateral strain versus axial strain
(σ3/σci = 1.0)
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Example 1.6 Triaxial tests on a Hoek-Brown-PAC material

model new
;file ’Hoek_Brown_pac_1.dat
model title ’Hoek-Brown-PAC - Case 1’
fish define _variables
;
; --- To reconstruct the compression analytical curves: ---

_sig_conf = 0.0
_max_eyy = -6.0e-2 ;<-- maximum ’driving’ strain (contraction negative)

;
; Plastic properties

_sig_ci = 1.0 ; <-- enter UCS as positive always
_mb = 5.0
_s = 1.0
_a = 0.5
_sig3_cv = 1.5 ; <-- enter UCS as positive always

;
_sig_tm2 = - _s*_sig_ci/_mb

;
; Elastic properties

_young = 100
_poiss = 0.35
_bulk = _young/3.0/(1-2*_poiss)
_shear = _young/2.0/(1+_poiss)

;
; Loading

_cyc = 20000 ; <-- number of steps in which load is to be applied
_delta_u = _max_eyy * 1.0
_y_vel = 0.5*_delta_u / _cyc
_minus_y_vel = -_y_vel

;
end
@_variables
block config axisymmetry
block smallstrain
block tolerance corner-round-length 1E-3
block tolerance minimum-edge-length 2E-3
block create polygon 0 0 0 1 1 1 1 0
block zone gen quad 2.0
block zone group ’mat1’
block zone cmodel assign hoek-brown-pac density 1 shear @_shear ...

bulk @_bulk constant-sci @_sig_ci constant-mb @_mb constant-s @_s ...
constant-a @_a stress-confining-prescribed @_sig3_cv range group ’mat1’

block edge apply stress @_sig_conf 0.0 0.0 ...
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range pos-x 0.9861 1.0188 pos-y -2.04E-2 1.0142
block gridpoint apply velocity-y -7.6e-5 ...

range pos-x -1.105E-2 1.011 pos-y 0.9877 1.0064
block gridpoint apply velocity-y 7.6e-5 ...

range pos-x -1.572E-2 1.0266 pos-y -1.105E-2 1.544E-2
block insitu stress @_sig_conf 0.0 @_sig_conf stress-ZZ @_sig_conf
fish define _record_variables
;

_disp_0 = 0.5*(block.gp.disp.x(block.gp.near(0,0)) + ...
block.gp.disp.x(block.gp.near(0,1)))

_disp_1 = 0.5*(block.gp.disp.x(block.gp.near(1,0)) + ...
block.gp.disp.x(block.gp.near(1,1)))

_eps_xx = -(_disp_0 - _disp_1)/1.0
;

_disp_0 = 0.5*(block.gp.disp.y(block.gp.near(0,0)) +...
block.gp.disp.y(block.gp.near(1,0)))

_disp_1 = 0.5*(block.gp.disp.y(block.gp.near(0,1)) + ...
block.gp.disp.y(block.gp.near(1,1)))

_eps_yy = -(_disp_0 - _disp_1)/1.0
;

zi = block.zone(block.head)
_count = 0
_sig_zz = 0.0
_sig_xx = 0.0
_sig_yy = 0.0
loop while zi # 0

_sig_zz = _sig_zz + block.zone.stress.zz(zi)
_sig_xx = _sig_xx + block.zone.stress.xx(zi)
_sig_yy = _sig_yy + block.zone.stress.yy(zi)
zi = block.zone.next(zi)
_count = _count + 1

endloop
;

_sig_zz = _sig_zz /_count
_sig_xx = _sig_xx /_count
_sig_yy = _sig_yy /_count
_record_variables = 1.0

;
end
fish history @_record_variables
history interval 1000
fish history @_eps_xx
fish history @_eps_yy
fish history @_eps_yy
fish history @_sig_xx
fish history @_sig_yy
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fish history @_sig_zz
block cycle 20000
;
; Copy histories to tables
;
hist export 2 table 11
hist export 3 table 12
hist export 4 table 13
hist export 5 table 21
hist export 6 table 22
hist export 7 table 23
;
fish define _copy_histories_to_tables
; Table 111 contains syy stress vs axial strain diagram
; Table 112 contains sxx stress vs axial strain diagram
; Table 113 contains szz stress vs axial strain diagram
; Table 114 contains lateral strain vs axial strain diagram

_n = table.size(11)
loop i (1,_n)

; _sig_yy vs _eps_yy
table.x(111,i) = -table.y(12,i)/_sig_ci
table.y(111,i) = -table.y(22,i)/_sig_ci

; _sig_xx vs _eps_yy
table.x(112,i) = -table.y(12,i)/_sig_ci
table.y(112,i) = -table.y(21,i)/_sig_ci

; _sig_zz vs _eps_yy
table.x(113,i) = -table.y(12,i)/_sig_ci
table.y(113,i) = -table.y(23,i)/_sig_ci

; _eps_xx vs _eps_yy
table.x(114,i) = -table.y(12,i)
table.y(114,i) = -table.y(11,i)

;
end_loop

;
end
@_copy_histories_to_tables
;
; Compute analytical solution
;
fish define _analytical_solution
;
; Stress-strain diagram
;

_sig1F = _sig_conf-_sig_ci*(-_mb*_sig_conf/_sig_ci+_s)ˆ_a
_S_s1e1_Elast = _young
_eps1CR = (_sig1F-_sig_conf)/_S_s1e1_Elast
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_eps1MAX = _max_eyy
;
; Table 211 contains syy stress vs axial strain diagram
; Table 212 contains sxx stress vs axial strain diagram
; Table 214 contains lateral strain vs axial strain diagram
;

table.x(211,1) = 0.0
table.x(211,2) = -_eps1CR/_sig_ci
table.x(211,3) = -_eps1MAX/_sig_ci
table.y(211,1) = -_sig_conf/_sig_ci
table.y(211,2) = -_sig1F/_sig_ci
table.y(211,3) = -_sig1F/_sig_ci

;
table.x(212,1) = 0.0
table.x(212,2) = -_eps1CR/_sig_ci
table.x(212,3) = -_eps1MAX/_sig_ci
table.y(212,1) = -_sig_conf/_sig_ci
table.y(212,2) = -_sig_conf/_sig_ci
table.y(212,3) = -_sig_conf/_sig_ci

;
; Strain-strain diagram
;

_S_e3e1_Elast = -_poiss
_eps3CR = _eps1CR*_S_e3e1_Elast
_Kpsi_0 = 1 + _a*_mb/(-_mb*_sig_conf/_sig_ci+_s)ˆ(1-_a)

;
if -_sig_conf > _sig3_cv

_Kpsi = 1.0
else

_Kpsi = _Kpsi_0 + _sig_conf/_sig3_cv * (_Kpsi_0-1)
end_if
_S_e3e1_Plast = -_Kpsi / 2.0
_eps3MAX = _eps3CR + (_eps1MAX-_eps1CR)*_S_e3e1_Plast

;
table.x(214,1) = 0.0
table.x(214,2) = -_eps1CR/_sig_ci
table.x(214,3) = -_eps1MAX/_sig_ci
table.y(214,1) = 0.0
table.y(214,2) = -_eps3CR/_sig_ci
table.y(214,3) = -_eps3MAX/_sig_ci

;
end
@_analytical_solution
table 212 label ’sxx vs eyy (analytical)’
table 211 label ’syy vs eyy (analyitical)’
table 111 label ’syy vs eyy (UDEC)’
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table 112 label ’sxx vs eyy (UDEC)’
table 113 label ’szz vs eyy (UDEC)’
table 114 label ’exx vs eyy (UDEC)’
table 214 label ’exx vs eyy (analytical)’
model save ’HB_1.sav’
return
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1.6.8.6 block zone cmodel Command and Property Keywords

Hoek-Brown-PAC – block zone cmodel assign hoek-brown-pac

(1) bulk elastic bulk modulus, K
(2) constant-a Hoek-Brown parameter, a
(3) constant-mb Hoek-Brown parameter, mb
(4) constant-s Hoek-Brown parameter, s
(5) constant-sci Hoek-Brown parameter, σci
(6) density mass density, ρ
(7) number-iterations number of iterations∗
(8) table-a number of table relating a to ep3
(9) table-mb number of table relating mb to ep3
(10) table-multiplier number of table relating a multiplier to σ3

(11) table-s number of table relating s to ep3
(12) table-sci number of table relating σci to ep3
(13) shear elastic shear modulus, G
(14) strain-3-plastic accumulated plastic strain, ep3
(15) stress-confining-prescribed Hoek-Brown parameter, σcv3

The following property can be printed, plotted or accessed via FISH.

(1) state plastic state

∗The Hoek-Brown-PAC model makes three attempts to bring a stress point to the yield surface:

1) A fast Newton solver is tried.

2) If 1) does not converge, the stress point is checked to see whether it falls below the apex
of the Hoek-Brown envelope (i.e., does it cross the σ1 = σ3 line). If this is the case, then
the stress point is set to the apex.

3) If 1) and 2) do not work, a bisection method is used to find the stress point on the yield
surface.

The number-iteration property reflects the attempts made to bring a stress point to the yield surface.
Each zone contains a number of triangular subzones that are sent in sequence to the constitutive
model. When the first subzone is received by the Hoek-Brown-PAC model, the Hoek-Brown-PAC
model sets number-iteration to 0. If case 1 works, number-iteration is set to max(number-iteration,
number of iterations required by the Newton solver). If case 2 is encountered, hb ind is set to
max(number-iteration, 1000). If case 3 is encountered, number-iteration is set to max(number-
iteration, 1000 + iterations required by the bisection algorithm). If none of the cases work, then
number-iteration is set to 9999.
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1.6.9 Hoek-Brown Model

A modified version of the hardening/softening Hoek-Brown model, described in Section 1.6.8,
is available as an alternative formulation. The Hoek-Brown model provides a representation for
yielding that accounts for the changing failure condition. This model works well at higher confining
stress states, but can produce excessive dilation at low confinement or under tensile-stress conditions.
The alternative version, described in this section, is modified to include a tensile yield criterion,
and also to allow the user to specify a dilation angle as an input parameter and manually control
the level of dilation that develops.

The modified Hoek-Brown model is derived directly from the Mohr-Coulomb model and, like
the Mohr-Coulomb model, can be used to perform factor-of-safety calculations using the block
factor-of-safety command. The formulation and an example exercise are given below.

1.6.9.1 Formulation and Implementation

The Hoek-Brown criterion is used for plastic yielding when the minor principal stress, σ3, is
compressive. The criterion is based on a nonlinear relation between major and minor principal
stresses, σ1 and σ3, as shown previously in Eq. (1.242), and repeated here:

σ1 = σ3 + σci

{
mb

σ3

σci
+ s

}a
(1.258)

where σci is the unconfined compressive strength of the intact rock, and mb, s and a are material
constants that can be related to the Geological Strength Index and rock damage (Hoek et al. 2002).

The Hoek-Brown envelope is extended for σ3 tensile by a combination of the Mohr-Coulomb
envelope (tangent to Hoek-Brown at σ3 = 0) and a tensile cut-off at σ3 = −sσci/mb.
The numerical implementation of the Hoek-Brown model uses a linear approximation, whereby
the nonlinear failure surface is continuously approximated by the Mohr-Coulomb tangent, at the
current stress level, σ3. The current tangent Mohr-Coulomb criterion is

σ1 = σ3Nφc + 2cc
√
Nφc (1.259)

where

Nφc = 1 + sin φc
1 − sin φc

= tan2(
φc

2
+ 45◦) (1.260)
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The current (apparent) value of cohesion, cc, and friction, φc, are calculated using

φc = 2 tan−1
√
Nφc − 90◦ (1.261)

cc = σucsc

2
√
Nφc

(1.262)

where

Nφc = 1 + amb

(
mb

σ3

σci
+ s

)a−1
(1.263)

σucsc = σ3(1 −Nφc)+ σci

(
mb

σ3

σci
+ s

)a
(1.264)

The Mohr-Coulomb envelope extension in the region of tensile σ3 is accounted for in the logic by
considering the following cap in Eqs. (1.263) and (1.264) (recall that compressive stress is positive):

σ3 = max(σ3, 0) (1.265)

The tensile yield logic is the same as the one used for the strain-softening model; it is described in
Section 1.6.4.2.

The plastic strain increment for shear yielding is defined using the current Mohr-Coulomb flow
rule:

�e
p
ij = �ep

∂g

∂σij
− 1

3
�e

p
volδij i = 1, 3 (1.266)

where �ep is the plastic flow increment intensity, g is the plastic potential function, and

�e
p
vol = �ep

( ∂g

∂σ11
+ ∂g

∂σ22
+ ∂g

∂σ33

)
(1.267)

The plastic potential function is

g = σ1 − σ3Nψc (1.268)
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where ψc is the current value of dilation and

Nψc = 1 + sinψc
1 − sinψc

(1.269)

The direction of plastic flow ( ∂g
∂σij

in Eq. (1.266)) is expressed using the plastic potential function.

The plastic flow increment intensity,�ep, is derived from the current tangent Mohr-Coulomb yield
criterion, Eq. (1.259). There are three choices of flow rule for the model:

1. Input a dilation angle (ψc is a constant value) specified by property keywords constant-
dilation and flag-dilation = 0.

2. Specify associated plastic flow (ψc is set equal to φc) by setting flag-dilation = −1.

3. Set dilation as a fraction of the friction angle (ψc is set to a constant timesφc); flag-dilation
is a positive fraction.

Strain hardening/softening behavior can be prescribed for the Hoek-Brown propertiesmb, s, a and
σci . The input is via tables, and in terms of an evolution parameter. There are two choices for
evolution parameter: plastic shear strain (property keyword flag-evolution is set to 1), or plastic
strain in the direction of the least compressive principal stress, σ3 (property keyword flag-evolution
is set to 0). The evolution parameter can be monitored via the property strain-plastic.

A simple regularization technique can be selected to address the issue of grid dependency on
softening behavior. To activate this technique, the grid zone size used to calibrate model properties
with experimental data is assigned to the property length-calibration. This property is the calibration
length. The input softening rate is then adjusted automatically to account for a different zone size
used in the full UDEC model. Note that this technique is experimental and should be used with
caution.

1.6.9.2 Triaxial Compression Test

The triaxial compression tests performed in Section 1.6.8.5 for the Hoek-Brown model described
in Section 1.6.8 are repeated for the modified Hoek-Brown model. Two compression loading tests
are performed: one test at zero confining stress, σ3/σci = 0; and the other test at high confining
stress, σ3/σci = 1.

The data file shown in Example 1.6 is used for these tests, with the Hoek-Brown model and properties
replaced by the modified Hoek-Brown model and properties. For the zero confining stress case, we
specify an associated flow rule; this is done with the command PROPERTY flag-dilation = -1. The
following commands are specified for this case.

block zone cmodel assign hoek-brown group ’biaxial test sample’
block zone prop bulk bulk shear shear
block zone prop const-sci= sig ci const-m= mb const-s= s hba= a
block zone prop flag-dilation -1
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For the higher confining stress case, we need to specify a dilation angle that is consistent with
the limiting constant-volume stress, σcv3 = 1.5, chosen for this test in Section 1.6.8.5. We linearly
interpolate a value for dilation corresponding to the current confining stress level of σ3 = 1, relative
to a nonassociated zero dilation at σcv3 = 1.5. The current dilation, ψc, is then taken to be a fraction
of the current friction angle, φc, using the linear interpolation

ψc

φc
= 1 − σ3

σcv3
= 0.333 (1.270)

The following commands are used to apply the modified Hoek-Brown model for this case.

sig conf = -1.0 ; confining stress

and

block zone cmodel assign hoek-brown group ’biaxial test sample’
block zone prop bulk bulk shear shear
block zone prop const-sci= sig ci const-m= mb const-s= s hba= a
block zone prop flag-dilation 0.333

The UDEC results for the zero confining stress case are compared to the analytical solution (from
Section 1.6.8.5) in Figures 1.38 and 1.39, and the results for the high confining stress case are
compared in Figures 1.40 and 1.41.
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Figure 1.38 Triaxial compression test – stress versus axial strain
(σ3/σci = 0) – modified Hoek-Brown model

Figure 1.39 Triaxial compression test – lateral strain versus axial strain
(σ3/σci = 0) – modified Hoek-Brown model
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Figure 1.40 Triaxial compression test – stress versus axial strain
(σ3/σci = 1.0) – modified Hoek-Brown model

Figure 1.41 Triaxial compression test – lateral strain versus axial strain
(σ3/σci = 1.0) – modified Hoek-Brown model
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1.6.9.3 block zone cmodel Command and Property Keywords

Hoek-Brown – block zone cmodel assign hoek-brown

(1) bulk elastic bulk modulus, K
(2) constant-a Hoek-Brown parameter, a
(3) constant-mb Hoek-Brown parameter, mb
(4) constant-dilation dilation angle, ψc (specified if flag-dilation = 0)
(5) constant-s Hoek-Brown parameter, s
(6) constant-sci Hoek-Brown parameter, σci
(7) density mass density, ρ
(8) flag-dilation = 0 to input a constant dilation angle specified by constant-dilation

= −1 to specify associated plastic flow; ψc = φc
= val where val is a fraction of friction angle, φc (ψc = val × φc)

(9) flag-evolution = 0 for evolution parameter set to plastic strain in direction of
least compressive principal stress
= 1 for evolution parameter set to plastic shear strain

(10) flag-fos = 0 for block factor-of-safety solution controlled by shear strength
= 1 for block factor-of-safety solution controlled by unconfined
compressive strength

(11) length-calibration calibration length to calibrate model properties to account
for zone size

(12) table-a number of table relating a to the evolution parameter
(13) table-mb number of table relating mb to the evolution parameter
(14) shear elastic shear modulus, G
(15) table-s number of table relating s to the evolution parameter
(16) table-sci number of table relating σci to the evolution parameter
(17) table-tension number of table relating tension, t , to the evolution parameter
(18) tension tension cutoff, t
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The following properties can be printed, plotted or accessed via FISH.

(1) current-a current value of a
(2) current-cohesion current value of cohesion, cc
(3) current-dilation current value of dilation angle, ψc ∗
(4) current-friction current value of friction angle, φc
(5) current-mb current value of mb
(6) current-s current value of s
(7) current-sci current value of σci
(8) state plastic state
(9) strain-plastic plastic strain in direction of least compressive principal stress

(if flag-evolution = 0)
plastic shear strain (if flag-evolution = 1)

* If flag-dilation = 0, dilation = min(constant-dilation, ψc). Thus, dilation may not always be equal to
the specified value of constant-dilation.
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1.6.10 Cap-Yield (formerly Cysoil) Model

The double-yield model (see Section 1.6.6) is a shear and volumetric hardening/softening model
for the simulation of soil behavior. One flexible feature of the model is the capability for adding
user-defined hardening/softening laws, which are then communicated to the model by means of
tables. As mentioned by Davis and Selvadurai (2002), the general concept of hardening is very
useful whenever there is a need for model responses that are more detailed than is possible with
perfect plasticity. In particular, a closed yield surface would be almost useless without volumetric
(cap) hardening.

The motivation for closing the yield surface by a cap on the mean stress axis is to permit plastic
behavior in response to an isotropic stress increase. This plasticity effect accounts for grain crushing
and rearrangement, and is particular to soils. In the double-yield model, the cap is a plane, normal to
the mean stress axis in stress space. The impact of this particular shape on the coefficient of lateral
earth pressure,K0, as predicted by the model in uniaxial compression tests, has been considered by
some users to be somewhat restrictive. The cap-yield model is a modification of the double-yield
model that addresses this issue by accounting for a cap with an elliptic shape in the (p′, q) plane.
The ratio of axes of the ellipse, α, determines the value of K0, and is a material property for the
model, which can be chosen to match a known value in uniaxial compression.

In addition, when subjected to deviatoric loading, soils usually exhibit a decrease in stiffness,
accompanied by irreversible deformation. In most cases, the plot of deviatoric stress versus axial
strain obtained in a drained triaxial test may be approximated by a hyperbola. This feature has
been used by Duncan and Chang (1970) to formulate their well-known “hyperbolic soil” model.
The hyperbolic soil model of Duncan and Chang is a nonlinear elastic model that has been shown
to exhibit some drawbacks. These drawbacks include, for example, difficulty in detecting and
characterizing unloading/reloading and, in specific cases, producing a nonphysical bulk-modulus
value that can lead to an erroneous energy generation in the model. Because the cap-yield model
is formulated in the theory of hardening plasticity, it allows for an alternative expression of the
hyperbolic behavior (based on friction hardening), which is capable of addressing some of these
problems.*

When tested under drained triaxial conditions, soils generally exhibit shear-induced volume changes
that are strongly dependent on soil density. Typically, there is a tendency for the soil to contract
under small shear strains, and to dilate under larger strains, unless it is very loose (Byrne et al.
2003). In particular, when fluid fills the pores, it is this tendency of the soil skeleton to contract
and dilate that controls its liquefaction response. Also, the shear-stress/shear-strain response of
loose soil may exhibit a softening response under undrained conditions. It is the existence of a
peak in shear strength which may lead to instability (static liquefaction) during a monotonic load-
controlled process (Boukpeti 2001). Shear-induced volume changes can be accounted for in the
cap-yield model by means of a dilation hardening/softening law.

* A simplified version of the cap-yield model (the cap-yield-simplified model) also addresses the
difficulties of the Duncan and Chang model, and is provided as an alternative to the Duncan and
Chang model. See Section 1.6.11.
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The cap-yield model is a strain-hardening constitutive model characterized by a frictional and
cohesive Mohr-Coulomb shear envelope, and an elliptic volumetric cap with ratio of axes, defined
by a shape parameter, α. The double-yield model, with its planar volumetric cap, is obtained as a
special case of the cap-yield formulation by assuming a value of α that is large compared to 1, and
specifying zero cohesion. The basic model is described in the following pages.

The basic cap-yield model behavior can be enhanced using three types of hardening laws: a cap-
hardening law, to capture the volumetric power law behavior observed in isotropic compaction tests;
a friction-hardening law, to reproduce the hyperbolic stress-strain law behavior observed in drained
triaxial tests; and a compaction/dilation law to model irrecoverable volumetric strain taking place as
a result of soil shearing. This customizing of the cap-yield model is discussed in Section 1.6.10.3.

1.6.10.1 Incremental Elastic Law

The elastic behavior is expressed using Hooke’s law. The incremental expression of the law in
terms of principal stress and strain* has the form

�σ ′
1 = α1�e

e
1 + α2(�e

e
2 +�ee3)

�σ ′
2 = α1�e

e
2 + α2(�e

e
1 +�ee3) (1.271)

�σ ′
3 = α1�e

e
3 + α2(�e

e
1 +�ee2)

where α1 = Ke + 4Ge/3, α2 = Ke − 2Ge/3, and Ke and Ge are current, tangent elastic bulk
and shear modulus, respectively. Some useful relations between Ke, Ge, Young modulus, Ee, and
Poisson’s ratio, ν, are listed for reference:

Ke = Ee

3(1 − 2ν)
Ge = Ee

2(1 + ν)

(1.272)

Ke

Ge
= 2(1 + ν)

3(1 − 2ν)

* Principal stress and strain components, represented by the symbol σi and ei (i = 1,3), respectively,
are positive in extension. Also, effective stresses are denoted by a prime. The principal effective
stresses are σ ′

1, σ ′
2, σ ′

3 and, by convention, σ ′
1 < σ ′

2 < σ ′
3 (i.e., σ ′

1 is the most compressive stress).

UDEC Version 7.0



BLOCK CONSTITUTIVE MODELS 1 - 141

1.6.10.2 Yield and Potential Functions

Shear Yield Criterion and Flow Rule – Shear yielding is defined by a Mohr-Coulomb criterion. The
yield envelope is expressed, in a form consistent with the cap formulation:

f s = Mp′ − q +Nc (1.273)

where c is cohesion, M = 6 sin φm/(3 − sin φm) and N = 6 cosφm/(3 − sin φm). p′ is the mean
effective stress, p′ = −(σ ′

1 + σ ′
1 + σ ′

1) / 3, and q is a measure of shear stress, defined as

q = −[σ ′
1 + (δ − 1)σ ′

2 − δσ ′
3] (1.274)

where δ = (3 + sin φm)/(3 − sin φm).

In the UDEC formulation, the mobilized friction angle, φm, and cohesion, c, are given in terms
of plastic shear-strain measure, γ p, by means of a user-defined table. If no table is provided, it is
assumed that friction and cohesion are constant, and equal to the input value of the friction property
and cohesion property. Also, plastic shear strain, γ p, is measured by a hardening parameter, whose
incremental form is the second invariant of the incremental plastic deviatoric strain tensor as shown
below in Eq. (1.279) (also see Section 1.6.4.1).

The potential function is nonassociated, and has the form

g = M∗p′ − q∗ (1.275)

where

q∗ = [σ ′
1 + (δ∗ − 1)σ ′

2 − δ∗σ ′
3] (1.276)

In these equations, δ∗ = (3 + sinψm)/(3 − sinψm) and M∗ = 6 sinψm/(3 − sinψm). Also,
the mobilized dilatancy angle, ψm, is given in terms of plastic shear strain, γ p, by means of a
user-defined table. If no table is provided, it is assumed that dilation is constant, and equal to the
input value of dilation property.

Volumetric Cap Criterion and Flow Rule – Yielding on the cap is associated; the criterion is

f c = q2

α2
+ p′2 − p2

c (1.277)

where α is a dimensionless parameter, defining the shape of the elliptical cap in the (p′, q) plane,
and pc is cap pressure. The hardening curve relating cap pressure, pc, to cap plastic volumetric
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strain, ep, is provided by means of a user-defined table. If no table is provided, pc is assumed to
be constant, and equal to the input value of cap pressure property.

Like the double-yield model, the cap-yield model uses a simple rule whereby the incremental elastic
stiffness,Ke, is proportional to the current incremental plastic stiffness,H = dpc/de

p. The factor
of proportionality is a constant, R. The current value of elastic shear modulus, Ge, is derived
assuming a constant Poisson’s ratio, using the input upper-bound values of shear and bulk modulus.

Tensile Yield Criterion and Flow Rule – The tensile yield function is the same as that used for the
Mohr-Coulomb and strain-hardening/softening models (see Sections 1.6.2.2 and 1.6.6.2)

f t = σ t − σ3 (1.278)

The tensile strength, σ t , is given in terms of the plastic tensile-strain measure, ept , as defined in
Section 1.6.4.1, and input by means of a user-defined table. If no table is provided, it is assumed
that tensile strength is constant, and equal to the input value of the tensile strength property.

Hardening Parameters – The evolution parameters for shear, cap and tensile yielding are indepen-
dent. The parameter for shear yielding, γ p, is defined incrementally as

�γp =
{

1

2

(
�e

ps

1 −�e
ps
m

)2 + 1

2

(
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m
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2

(
�e
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)2
} 1

2

(1.279)

where

�e
ps
m = 1

3

(
�e

ps

1 +�e
ps

3

)

and �epsj , j = 1, 3 are the principal plastic shear strain increments.

The evolution parameter for cap yielding is the modulus of plastic volumetric strain, ep, and its
increment is defined as (see Section 1.6.6.3)

�ep = |�ep1 +�e
p

2 +�e
p

3 | (1.280)

where �epj , j = 1, 3 are principal plastic strain increments from yielding on the cap.
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The evolution parameter for tensile yielding is the modulus of plastic tensile strain, ept . The
increment of plastic tensile strain is defined as (also see Section 1.6.4.1)

�ept = �e
pt

3 (1.281)

where �ept3 is the increment of tensile plastic strain in the direction of the major principal stress
(recall that tensile stresses are positive).

1.6.10.3 Customizing the cap-yield Model

Cap Hardening – Soil stiffness usually increases in a nonlinear fashion as a function of isotropic
pressure. A cap-hardening table is used to specify a power law behavior. In most experimental
cases, soil volumetric behavior in an isotropic compaction test can be captured by a power law of
the form

dp′

de
= Kiso

ref

(
p′

pref

)m
(1.282)

where e is (minus) volumetric strain, Kiso
ref is the slope of the laboratory curve for p′ versus e at

reference effective pressure, pref , and m is a constant (m < 1). A typical graph, representative of
this law, is sketched with a small unloading excursion in Figure 1.42.

Figure 1.42 Isotropic consolidation test: pressure versus volumetric strain
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For input into the cap-yield model, a relation between cap pressure, pc, and plastic volumetric
strain, ep, is required. This relation can be obtained from the following considerations. For
isotropic compression dp′ = dpc, and we can write

dpc

dep
= de

dep

dp′

de
(1.283)

Now, the total strain increment has elastic and plastic contributions: de = dee + dep. Substitution
of this expression for de in Eq. (1.283) gives

dpc

dep
= dee + dep

dep

dp′

de
(1.284)

The cap-yield model assumes that the ratio of elastic modulus, Ke, to hardening modulus, H , is
equal to a constant, R = Ke / H , where, by definition, Ke = dp′/dee and H = dpc / dep. For
isotropic compression, dp′ = dpc, and we can write

R = dep

dee
(1.285)

Finally, using Eq. (1.285) in Eq. (1.284) gives, after some manipulation,

dpc

dep
= 1 + R

R

dp′

de
(1.286)

After substitution of Eq. (1.282) in Eq. (1.286), we obtain

dpc

dep
= 1 + R

R
Kiso
ref

(
p′

pref

)m
(1.287)

Integration of this expression gives, with pc = 0 at ep = 0,

pc = pref

[
(1 −m)

1 + R

R

Kiso
ref

pref
ep

] 1
1−m

(1.288)

This formula is used to generate the input table of pc in terms of ep. The law has 4 parameters:
Kiso
ref , pref , m and R. Note that, since the cap-yield model assumes that Ke = R × dpc/de

p, by
virtue of Eq. (1.287), the equation for the elastic bulk modulus is

UDEC Version 7.0



BLOCK CONSTITUTIVE MODELS 1 - 145

Ke = (1 + R)Kiso
ref

(
p′

pref

)m
(1.289)

Friction Hardening – For most soils, the plot of deviatoric stress versus axial strain obtained in a
drained triaxial test may be approximated by a hyperbola. The model is supplemented by a friction
strain-hardening table to capture this hyperbolic behavior. For friction-hardening behavior, we adopt
the following (hyperbolic) incremental law, similar to the one implemented in the UBCSAND model
(Byrne et al. 2003),

d(sin φm) = Gp

p′ d(γ
p) (1.290)

where p′ is effective pressure, and the plastic shear modulus, Gp, is given by

Gp = βGe
(

1 − sin φm
sin φf

Rf

)2

: φm ≤ φf (1.291)

In this formula, Ge is the elastic tangent shear modulus, φf is the ultimate friction angle, Rf (the
failure ratio) is a constant, smaller than 1 (0.9 in most cases), used to assign a lower bound forGp,
and β is a calibration factor.

The elastic tangent shear modulus is a function of p′, and we have

Ge = Geref

(
p′

pref

)m
(1.292)

whereGeref is elastic tangent shear modulus at reference effective pressure, pref , andm is a constant
(m ≤ 1), taken as 1 for this discussion. After substitution of Eq. (1.292) in Eq. (1.291), the resulting
expression in Eq. (1.290), and rearranging terms, we obtain

d(γ p) = pref

Geref

(
p′

pref

)1−m
d(sin φm)(

1 − sin φm
sin φf

Rf

)2
(1.293)

Using that φm = 0 at γ p = 0, integration of this expression gives

γ p = pref

Geref

(
p′

pref

)1−m sin φf
Rf

[
1

1 − sin φm
sin φf

Rf
− 1

]
(1.294)
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For m = 1, the hardening law simplifies to

γ p = pref

Geref

sin φf
Rf

[
1

1 − sin φm
sin φf

Rf
− 1

]
(1.295)

This expression is used to generate the model input table of friction in terms of plastic shear strain.
As demonstrated in the example below, the use of this hardening law for modeling primary loading
in a triaxial test will produce a hyperbolic curve of deviatoric stress versus axial strain. The law
has 5 parameters: Geref , pref , Rf , φf and β.

Dilation Hardening – A certain amount of irrecoverable volumetric strain, ep, is expected to take
place as a result of soil shearing. Also, under small (monotonic or cyclic) shear strains, there is a
tendency for the soil skeleton to contract due to grain rearrangements. For larger shear strains, the
soil skeleton may dilate if the soil is dense, as a result of grains riding over each other. A dilation
strain-hardening table is used to model this non-monotonic behavior. For the cap-yield model, the
shear-hardening flow rule has the form

ėp = γ̇ p sinψm (1.296)

where ψm is the (mobilized) dilation angle.

Several different laws are available in the literature to characterize ψm. For the purpose of the
present illustration, we use an equation based on Rowe’s stress-dilatancy theory (Rowe 1962).
According to this theory, there is a constant-volume stress ratio, φcv , below which the material
contracts (i.e., for φm < φcv), while for higher stress ratios (i.e., for φm > φcv), the material dilates.
The equation has the form

sinψm = sin φm − sin φcv
1 − sin φm sin φcv

(1.297)

where

sin φcv = sin φf − sinψf
1 − sin φf sinψf

(1.298)

and φf and ψf are ultimate (known) values of friction and dilation, respectively.

A table of dilation value versus plastic shear strain is produced for input in UDEC, based on the
last two equations and the assumed relation between φm and γ p reported in Eq. (1.295).
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1.6.10.4 Implementation Procedure

Note that the parameters involved in the selected shear and volumetric hardening laws are not all
independent: they must be chosen consistent with the model assumptions. One assumption is that
the ratioKe /Ge be constant, and equal to the ratio of input upper-bound valuesK andG. Assuming
that the reference pressure is the same in Eqs. (1.289) and (1.292), it follows that the exponent m
should be the same in both laws. Also, we must have

K

G
= (1 + R)Kiso

ref

Geref
(1.299)

Thus, the parameter R should be consistent with the choice for Kiso
ref and Geref (assuming these

were selected independently). The consistency condition gives

R = K

G

Geref

Kiso
ref

− 1 (1.300)

Obviously, the derived value for R should be larger than or equal to zero.

1.6.10.5 Isotropic Compression Tests

Isotropic compression tests on dense, medium and loose sand are simulated using the cap-yield
model with the cap-hardening law described by Eq. (1.288), input in the form of a table. The
cap-yield model properties for the tests are listed in Table 1.2.

Table 1.2 Cap-yield model properties for isotropic compr. test

Parameter Dense Medium Loose

Kiso
ref (kN/m2) 40,000 30,000 20,000

pref (kPa) 100 100 100

ν 0.2 0.2 0.2

m 0.5 0.5 0.5

R 0.66 0.66 0.66

α 1 1 1

The simulation is run in axisymmetric mode. The UDEC grid consists of three separate zones with
unit dimensions, lined up along the symmetry axis. The initial stress state is isotropic in each zone;
the magnitude of the confining stress is 10 kN/m2. The sand is normally consolidated for the tests
(the initial cap pressure is equal to 10 kN/m2). The input values of bulk and shear modulus are set
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to high values, consistent with the given Poisson’s ratio, ν, listed in Table 1.2. (These input values
are used as the upper bound for tangent bulk and shear elastic modulus calculated by the code.)
The cap behavior is assigned using a different table for each zone, consistent with the formula
(Eq. (1.288)) and the data in Table 1.2. The base of the zones is fixed in the axial (y-) direction,
confining velocities of magnitude 10−6 m/step are applied at the top and lateral sides of the zone
for a total of 2500 steps. Five unloading/reloading excursions are also included.

A plot of vertical (axial) stress versus axial strain for the test is shown for dense, medium and
loose soil cases in Figure 1.43. The plot shows the power law and stiffer behavior achieved by
the denser soil, as expected from the model. A plot of elastic bulk modulus versus axial strain
for the test is shown in Figure 1.44. The bulk modulus is seen on the plot to remain constant
during unloading/reloading; also, the value is higher for higher strain levels, consistent with the
dependency of the property on plastic deformation.
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Figure 1.43 Axial stress (in kN/m2) versus axial strain for dense, medium and
loose sand

Figure 1.44 Bulk modulus (in kN/m2) versus axial strain for dense, medium
and loose sand
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Example 1.7 Isotropic compression tests

model new
;file: cysoil_1.dat’
Model title ’cap-yield - isotropic compression’
[global pc0 = 10.0]
[global _v1=-2e-5]
[global _v2= 2e-6]
[global _v3=-2e-6]
block config axisymmetry
block tolerance corner-round-length 5E-3
block tolerance minimum-edge-length 1E-2
block create polygon 0 0 0 5 1 5 1 0
block cut crack 0 1 1 1
block cut crack 0 2 1 2
block cut crack 0 3 1 3
block cut crack 0 3 1 3
block cut crack 0 4 1 4
block zone gen edge 2.0
block zone group ’mat1’
block zone cmodel assign cap-yield range group ’mat1’
block zone prop density 1E3 pressure-reference=100 poisson=.2 ...

multiplier=.667 pressure-initial=@pc0 flag-cap=1 pressure-cap @pc0 ...
friction 45 range group ’mat1’

block contact prop mat 1 st-n 1e5 st-s 1e5
block zone group ’Null:j2’ range atblock 0.5 1.5
block zone cmodel assign null range group ’Null:j2’
block zone group ’Null:j4’ range atblock 0.5 3.5
block zone cmodel assign null range group ’Null:j4’
block zone prop shear-reference 300 range pos-x 0 1 pos-y 4 5
; --- medium ---
block zone prop shear-reference 225 range pos-x 0 1 pos-y 2 3
; --- loose ---
block zone prop shear-reference 150 range pos-x 0 1 pos-y 0 1
;
block insitu stress -10.0 0.0 -10.0 stress-ZZ -10.0
block gridpoint apply vel-x 0 vel-y 0
block gridpoint apply velocity-y @_v1 range pos-x 0 1 pos-y 0.9 1.1
block gridpoint apply velocity-y @_v1 range pos-x 0 1 pos-y 2.9 3.1
block gridpoint apply velocity-y @_v1 range pos-x 0 1 pos-y 4.9 5.1
block gridpoint apply velocity-x @_v1 range pos-x 0.9 1.1 pos-y 0 5
block insitu stress -10.0 0.0 -10.0 stress-ZZ -10.0
;
[global _z5 = block.zone.near(0,5)]
[global _z3 = block.zone.near(0,3)]
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[global _z1 = block.zone.near(0,1)]
fish define _bulk_current1

global _bulk_current5 = block.zone.prop(_z5,’bulk’)
global _bulk_current3 = block.zone.prop(_z3,’bulk’)
global _bulk_current1 = block.zone.prop(_z1,’bulk’)

end
history interval 20
;
block zone hist stress-yy 0 5
block gridpoint history displacement-y 0 5
fish history @_bulk_current5
block zone hist stress-yy 0 3
block gridpoint history displacement-y 0 3
fish history @_bulk_current3
block zone hist stress-yy 0 1
block gridpoint history displacement-y 0 1
fish history @_bulk_current1
;
fish define trip

loop i (1,5)
command

bl gridpoint apply velocity-y @_v1 range pos-x 0 1 pos-y 0.9 1.1
bl gridpoint apply velocity-y @_v1 range pos-x 0 1 pos-y 2.9 3.1
bl gridpoint apply velocity-y @_v1 range pos-x 0 1 pos-y 4.9 5.1
bl gridpoint apply velocity-x @_v1 range pos-x 0.9 1.1 pos-y 0 5
bl cycle 300
bl gridpoint apply velocity-y @_v2 range pos-x 0 1 pos-y 0.9 1.1
bl gridpoint apply velocity-y @_v2 range pos-x 0 1 pos-y 2.9 3.1
bl gridpoint apply velocity-y @_v2 range pos-x 0 1 pos-y 4.9 5.1
bl gridpoint apply velocity-x @_v2 range pos-x 0.9 1.1 pos-y 0 5
bl cycle 3000
bl gridpoint apply velocity-y @_v3 range pos-x 0 1 pos-y 0.9 1.1
bl gridpoint apply velocity-y @_v3 range pos-x 0 1 pos-y 2.9 3.1
bl gridpoint apply velocity-y @_v3 range pos-x 0 1 pos-y 4.9 5.1
bl gridpoint apply velocity-x @_v3 range pos-x 0.9 1.1 pos-y 0 5
bl cycle 3000

end_command
end_loop

end
block cycle 1000
@trip
model save ’cysoil_1.sav’
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1.6.10.6 Oedometer Tests

Oedometer test simulations are carried out for different values of the parameter α, to evaluate the
impact of the cap aspect ratio on confining stress when yielding occurs on the cap. The values of
α considered for the tests are 0.5, 1 and 1020 (i.e., a value very large compared to 1, in which case
the behavior of the double-yield model is recovered).

We use the same setup and properties (apart from α) as in the previous example, except in this
case the simulations are run in plane-strain, with fixed lateral boundaries to simulate oedometer test
conditions. Friction is assigned a large value to prevent shear yielding. The ratio, K0, of confining
stress to vertical stress, σxx / σyy , is plotted versus axial strain for dense, medium and loose sand
in two figures below: Figure 1.45 compares predictions for α = 0.5 and α = 1020 (double-yield
model), and Figure 1.46 shows plots for α = 1.0 and α = 1020 (double-yield model).

The results of the oedometer simulations show that, with the given properties, a higher value ofK0
is achieved for the cap-yield model than the double-yield model. And for all tests, the lower the
aspect ratio of the cap, the higher theK0 achieved. Also, dense, medium and loose sands converge
to the same ultimate K0 value as deformation takes place, and they do so at a faster deformation
rate for the cap-yield model than the double-yield model.

Figure 1.45 K0 versus axial strain for dense, medium and loose sand
– α = 0.5 (top) and double-yield model (bottom)
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Figure 1.46 K0 versus axial strain for dense, medium and loose sand
– α = 1.0 (top) and double-yield model (bottom)

Example 1.8 Oedometer tests

model new
;file: cysoil_2.dat’
model title "Oedometer test - dense, medium, loose sand - CYSoil and DY"
block config
[global _pc0 = 10.0]
[global _vy = -1.83e-4]
block tolerance corner-round-length 5E-3
block tolerance minimum-edge-length 1E-2
block create polygon 0 0 0 5 3 5 3 0
block cut crack (0,1) (3,1) join
block cut crack (0,2) (3,2) join
block cut crack (0,3) (3,3) join
block cut crack (0,4) (3,4) join
block cut crack (1,0) (1,5) join
block cut crack (2,0) (2,5) join
block zone gen edge 2.0
block zone group ’gcy’
block zone group ’gdy’ range pos-x 2 3 pos-y 0 5
block zone cmodel assign cap-yield range group ’gcy’
block zone property density=1000 pressure-reference=100. poisson=0.2 ...
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multiplier=[2.0/3.0] flag-cap=1 flag-shear=1 friction=89.0 ...
pressure-cap=@_pc0 pressure-initial=@_pc0 range group ’gcy’

block zone cmodel assign double-yield range group ’gdy’
block zone property density=1000 bulk-maximum=1.e15 ...

shear-maximum=0.75e15 friction=89.0 pressure-cap=@_pc0 ...
multiplier=[2.0/3.0] range group ’gdy’

block zone group ’gnull’ range pos-x 0 3 pos-y 1 2
block zone group ’gnull’ range pos-x 0 3 pos-y 3 4
block zone group ’gnull’ range pos-x 1 2 pos-y 0 5
block zone cmodel assign null density 1000 bu 1e8 sh .7e8 ...

range group ’gnull’
; double-yield
call ’fish’
@cap_table(1, 300.)
block zone property strain-volumetric-plastic=@evp0 ...

table-pressure-cap=1 range group ’gdy’ position-z 4 5
@cap_table(2, 225.)
block zone property strain-volumetric-plastic=@evp0 ...

table-pressure-cap=2 range group ’gdy’ position-z 2 3
@cap_table(3, 150.)
block zone property strain-volumetric-plastic=@evp0 ...

table-pressure-cap=3 range group ’gdy’ position-z 0 1
; cap-yield-soil
zone property shear-reference 300. range group ’gcy’ position-z 4 5
zone property shear-reference 225. range group ’gcy’ position-z 2 3
zone property shear-reference 150. range group ’gcy’ position-z 0 1
bloc con prop mat 1 st-n 1e9 st-s 1e9
block insitu stress [-_pc0] 0.0 [-pc0] stress-ZZ [-pc0]
block gridpoint apply velocity-y 0
block gridpoint apply velocity-x 0
block gridpoint apply-interior velocity-y 0
block gridpoint apply-interior velocity-x 0

block gridpoint apply velocity-y [_vy] range pos-x 0 3 pos-y 0.9 1.1
block gridpoint apply velocity-y [_vy] range pos-x 0 3 pos-y 2.9 3.1
block gridpoint apply velocity-y [_vy] range pos-x 0 3 pos-y 4.9 5.1
block gridpoint apply-int velocity-y [_vy] range pos-x 0 3 pos-y 0.9 1.1
block gridpoint apply-int velocity-y [_vy] range pos-x 0 3 pos-y 2.9 3.1
;block gridpoint apply-int velocity-y [_vy] range pos-x 0 3 pos-y 4.9 5.1
;
@_hist_setup
history interval 100
block grid hist dis-y 0,1
fish history @_k0_d_cy
fish history @_k0_d_dy
fish history @_k0_m_cy
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fish history @_k0_m_dy
fish history @_k0_l_cy
fish history @_k0_l_dy
model save ’ini’

; -- alpha = 0.5
model restore ’ini’
block zone prop alpha=0.5 range group ’gcy’
block cycle 120000
model save ’al1’
-- alpha = 1.0

model restore ’ini’
block zone prop alpha=1.0 range group ’gcy’
block cycle 120000
ret
model save ’al2’
-- alpha = 1.5

model restore ’ini’
block zone prop alpha=1.5 range group ’gcy’
block cycle 12000
model save ’al3’
ret
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1.6.10.7 Drained Triaxial Tests – Constant Dilation

Triaxial tests on dense, medium and loose sand are simulated using the cap-yield model with the
friction-hardening law described in Eq. (1.294) – input in the form of tables. The model properties
are listed in Table 1.3. The cap pressure is assigned a value that is very large compared to the stress
level reached in the simulations, in order to prevent yielding on the cap. The cap α is 1.

Two simulations are run: one without cohesion, and one with cohesion set to 100 kPa. The simu-
lations are run in axisymmetric mode. The UDEC grid consists of one zone with unit dimensions.
The initial stress state is isotropic, with mean pressure equal to 100 kPa. The lateral pressure is
kept constant during the test, the base of the model is fixed in the axial (y-) direction, and an axial
velocity of 10−6 m/step is applied at the top of the model for a total of 5000 steps. In addition,
three unloading/reloading excursions are performed.

Table 1.3 Cap-yield model properties for triaxial test

Parameter Dense Medium Loose

Geref (kPa) 50,000 37,500 25,000

pref (kPa) 100 100 100

ν 0.2 0.2 0.2

m 1 1 1

φf (degrees) 40 35 30

ψf (degrees) 10 5 0

Rf 0.9 0.9 0.9

β 0.35 0.35 0.35

cohesion (kPa) 100 100 100

A plot of deviatoric stress versus axial strain for the cohesionless simulation is shown in Figure 1.47
for dense, medium and loose sand cases. The plot shows the hyperbolic behavior expected from
the model, and the higher failure level achieved by the denser soil. Three unloading/reloading
excursions (also shown on the figure) illustrate the model capabilities. The plot of volumetric strain
versus axial strain for the cohesionless simulation is shown in Figure 1.48. The volumetric behavior
is monotonic in the plot, the dilatant behavior of the dense sand is clearly shown.
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Figure 1.47 |σ1 - σ3| (in kN/m2) versus axial strain for dense, medium and
loose sand – constant dilation

Figure 1.48 Volumetric strain versus axial strain for dense, medium and loose
sand – constant dilation
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The comparable results for the simulation with cohesion set to 100 kPa are shown in Figures 1.49
and 1.50. By specifying the same friction table and zero initial friction, the material behavior is
expected to be elastic for values of maximum shear stress smaller than the cohesion value, and
elastic-plastic at higher shear stress levels. This is evident in Figure 1.49. This simulation is done
to illustrate the working of the cohesion logic; the friction hardening table should be adjusted to
reflect more realistic behavior for a cohesive material.

Example 1.9 lists the data file for the triaxial test on dense sand. Test results for all three cases are
written to tables. Plots in Figures 1.47 through 1.50, compare the three cases for cohesionless and
cohesive soil.
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Figure 1.49 |σ1 - σ3| (in kN/m2) versus axial strain for dense, medium and
loose sand – constant dilation, cohesion = 100

Figure 1.50 Volumetric strain versus axial strain for dense, medium and loose
sand – constant dilation, cohesion = 100
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Example 1.9 Triaxial tests (constant dilation)

; Drained Triaxial Tests - Constant Dilation

model new
[global _iChoice = 1]
[global _Gref = 500.]
[global _friu = 40.]
[global _dilu = 10.]
[global _coh = 0.]
call ’drained_constant.dat’

model new
[global _iChoice = 2]
[global _Gref = 375.]
[global _friu = 35.]
[global _dilu = 5.]
[global _coh = 0.]
call ’drained_constant.dat’

model new
[global _iChoice = 3]
[global _Gref = 250.]
[global _friu = 30.]
[global _dilu = 0.]
[global _coh = 0.]
call ’drained_constant.dat’

model new
model title "Drained triaxial test - cap-yield-soil"

table ’deviatoricStress1’ import ’deviatoricStress1’
table ’deviatoricStress2’ import ’deviatoricStress2’
table ’deviatoricStress3’ import ’deviatoricStress3’
table ’volumetricStrain1’ import ’volumetricStrain1’
table ’volumetricStrain2’ import ’volumetricStrain2’
table ’volumetricStrain3’ import ’volumetricStrain3’
ret
model new
[global _iChoice = 1]
[global _Gref = 500.]
[global _friu = 40.]
[global _dilu = 10.]
[global _coh = 100.]
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call ’drained_constant.dat’

model new
[global _iChoice = 2]
[global _Gref = 375.]
[global _friu = 35.]
[global _dilu = 5.]
[global _coh = 100.]
call ’drained_constant.dat’

model new
[global _iChoice = 3]
[global _Gref = 250.]
[global _friu = 30.]
[global _dilu = 0.]
[global _coh = 100.]
call ’drained_constant.dat’

model new
model title "Drained triaxial test - cap-yield-soil"

table ’deviatoricStress1’ import ’deviatoricStress1’
table ’deviatoricStress2’ import ’deviatoricStress2’
table ’deviatoricStress3’ import ’deviatoricStress3’
table ’volumetricStrain1’ import ’volumetricStrain1’
table ’volumetricStrain2’ import ’volumetricStrain2’
table ’volumetricStrain3’ import ’volumetricStrain3’

1.6.10.8 Drained Triaxial Tests – Dilation Hardening

The triaxial test simulations with friction hardening in Section 1.6.10.7 are repeated, this time also
using a dilation hardening table as described by Eq. (1.296). Initial dilation is zero, and the ultimate
value of dilation is listed in Table 1.3. Example 1.10 lists the data file for the triaxial test on dense
sand, including dilation hardening. The results of all three cases are compared, as before, by writing
the results to tables and creating plots using the command file listed in Example 1.10.

The simulation results of deviatoric stress and volumetric strain versus axial strain are plotted in
Figures 1.51 and 1.52, respectively. The non-monotonic volumetric behavior is apparent in the
second plot: all soil types do compact initially, and the denser soil is shown to dilate upon further
shearing.
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Figure 1.51 |σ1 - σ3| (in kN/m2) versus axial strain for dense, medium and
loose sand – dilation hardening
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Figure 1.52 Volumetric strain versus axial strain for dense, medium and loose
sand – dilation hardening

Example 1.10 Triaxial tests (dilation hardening)

; Drained Triaxial Tests - Dilation Hardening

model new
[global _iChoice = 1]
[global _Gref = 500.]
[global _friu = 40.]
[global _dilu = 10.]
[global _coh = 0.]
call ’Drained_Dilational.dat’

model new
[global _iChoice = 2]
[global _Gref = 375.]
[global _friu = 35.]
[global _dilu = 5.]
[global _coh = 0.]
call ’Drained_Dilational.dat’

model new
[global _iChoice = 3]
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[global _Gref = 250.]
[global _friu = 30.]
[global _dilu = 0.]
[global _coh = 0.]
call ’Drained_Dilational.dat’

model new
model title "Drained triaxial test - cap-yield-soil"

table ’deviatoricStress1’ import ’deviatoricStress_dh1’
table ’deviatoricStress2’ import ’deviatoricStress_dh2’
table ’deviatoricStress3’ import ’deviatoricStress_dh3’
table ’volumetricStrain1’ import ’volumetricStrain_dh1’
table ’volumetricStrain2’ import ’volumetricStrain_dh2’
table ’volumetricStrain3’ import ’volumetricStrain_dh3’
ret
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1.6.10.9 block zone cmodel Command and Property Keywords

Cap-Yield (formerly Cysoil) – block zone cmodel assign cap-yield

(1) alpha cap yielding surface parameter, α
(2) bulk maximum elastic bulk modulus, K
(3) cohesion cohesion, c
(4) density mass density, ρ
(5) dilation ultimate dilation angle, ψ
(6) dilation-mobilized mobilized dilation angle, ψm
(7) friction ultimate friction angle, φ
(8) friction-mobilized mobilized friction angle, φm
(9) multiplier multiplier on current plastic cap modulus to give elastic bulk and

shear moduli, R
(10) pressure-cap current intersection of volumetric yield surface (cap) with

pressure (mean stress) axis, pc
(11) shear maximum elastic shear modulus, G
(12) table-cohesion number of table relating cohesion to plastic shear strain
(13) table-dilation number of table relating mobilized dilation angle to plastic shear strain
(14) table-friction number of table relating mobilized friction angle to plastic shear strain
(15) table-pressure-cap number of table relating cap pressure, pc, to plastic volumetric strain
(16) table-tension number of table relating tensile strength to plastic tensile strain
(17) tension tensile strength, σ t

The following properties can be printed, plotted or accessed via FISH.

(1) bulk current elastic bulk modulus
(2) pressure-effective mean effective pressure, p
(3) shear current elastic shear modulus
(4) state plastic state
(5) strain-shear-plastic accumulated plastic shear strain, εps

(6) strain-tension-plastic accumulated plastic tensile strain, εpt

(7) strain-volumetric-plastic accumulated plastic volumetric strain, εpc

(8) stress-deviatoric deviatoric stress, q
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1.6.11 Cap-yield-simplified (formerly Chsoil) Model

As discussed previously in Section 1.6.10, when subjected to deviatoric loading, soils usually
exhibit a decrease in stiffness, accompanied by irreversible deformation. The well-known Duncan
and Chang model (1970) is commonly used to simulate this hyperbolic stress-strain behavior. The
Duncan and Chang model is relatively easy to use but, as noted in Section 1.6.10, this model has
several drawbacks. In addition, hyperbolic relations that rely on nonlinear elasticity are known to
have significant limitations (Duncan et al. 1980), including (1) the relations are applicable prior to
failure, but may produce unrealistic behavior of soils at and after failure; (2) the hyperbolic relations
do not include volume change resulting from change in shear stress (the implied dilation relies on
the Poisson’s ratio), and thus may not be able to predict deformations in dilatant soils accurately,
such as dense sands under low confining pressure; and (3) the relations predict an isotropic behavior
in the � plane which is not always realistic (soil strengths in triaxial compression and extension
usually differ in magnitude).

A simplified version of the cap-yield model (the cap-yield-simplified model) is provided as an
alternative to the Duncan and Chang model that does not have the drawbacks of this model. The
cap-yield-simplified model is derived from the same strain hardening/softening logic that exists in
the cap-yield model, and therefore can provide a realistic stress-strain relation at failure and post-
failure. The cap-yoeld-simplified model provides built-in features, and does not have a volumetric
cap.

There are three specific features of the cap-yield-simplified model:

1. A built-in friction hardening law that uses hyperbolic model parameters as direct input.

2. A frictional Mohr-Coulomb shear envelope.

3. Two built-in dilation laws: one is based on Rowe’s stress dilatancy theory (Rowe 1962),
and the other is a user-defined dilation hardening/softening law.

The unloading behavior of the cap-yield-simplified model is elastic. Reloading is elastic up to the
outermost yield envelope reached previously. Note that in its present form, the cap-yield-simplified
model is not intended to simulate cyclic loading.

1.6.11.1 Incremental Elastic Law

The elastic behavior of the cap-yield-simplified model is expressed using Hooke’s law. The incre-
mental expression of the law in terms of principal stress and strain has the form

�σ ′
1 = α1�e

e
1 + α2(�e

e
2 +�ee3)

�σ ′
2 = α1�e

e
2 + α2(�e

e
1 +�ee3) (1.301)

�σ ′
3 = α1�e

e
3 + α2(�e

e
1 +�ee2)
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where α1 = Ke + 4Ge/3, α2 = Ke − 2Ge/3, andKe andGe are the tangent elastic bulk and shear
modulus, respectively.

In the cap-yield-simplified model, the elastic shear modulus depends on the initial value of mean
effective stress, p′

m. The mean effective stress is specified by the user using, for example, the
expression

p′
m = −σ

′
1 + σ ′

2 + σ ′
3

3
(1.302)

The variation of Ge with p′
m is represented by the equation (see, for example, Byrne et al. 2003)

Ge = Gref pref

( p′
m

pref

)n
(1.303)

The parameter pref is the reference pressure, andGref is the shear modulus number (Gref × pref
is the value of the tangent elastic shear modulus at reference pressure). n is a constant modulus
exponent (n ≤ 1). Also, the tangent elastic bulk modulus is described by the relation

Ke = Kref pref

( p′
m

pref

)m
(1.304)

The parameterKref is the bulk modulus number, the product (Kref ×pref is the value of the tangent
elastic bulk modulus at reference pressure), and m is a constant modulus exponent (m ≤ 1).

Some useful relations between Kref , Gref , Young’s modulus number, Eref , and Poisson’s ratio at
reference pressure, νref , are listed for reference:

Kref = Eref

3(1 − 2νref )
Gref = Eref

2(1 + νref )

(1.305)

Kref

Gref
= 2(1 + νref )

3(1 − 2νref )

The user can specify eitherEref and νref orKref andGref as input properties for the model. IfEref
and νref are specified, Kref and Gref are calculated internally from Eq. (1.305), and the resulting
values are used with Eqs. (1.303) and (1.304). Values of Poisson’s ratio are restricted to positive
values smaller than 0.49. Accordingly, upper and lower bounds for Ke are specified internally as

2Ge

3
< Ke < 49.66Ge (1.306)
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As noted above, the initial mean effective pressure, p′
m, must be provided as an input property for

the model. (This value may be evaluated using FISH, and stored in the associated zone property
offset.) The value of p′

m is used to calculate the tangent elastic shear and bulk moduli, according
to Eqs. (1.303) and (1.304). Ge and Ke stay constant in this implementation; the moduli are not
updated automatically in terms of mean effective pressure.

1.6.11.2 Shear Yield Criterion and Flow Rule

Shear yielding is defined by a Mohr-Coulomb criterion. The yield envelope is expressed as

f s = σ ′
1 − σ ′

3Nφm + 2c
√
Nφm (1.307)

where c is the cohesion, φm is the mobilized friction angle and, by definition,

Nφm = 1 + sin φm
1 − sin φm

(1.308)

The potential function is nonassociated, and has the form

g = σ ′
1 − σ ′

3Nψm (1.309)

where

Nψm = 1 + sinψm
1 − sinψm

(1.310)

and ψm is the mobilized dilation angle. Several different laws are available in the literature to
characterize ψm.

By default, ψm can be given in terms of plastic shear strain via a user-defined table of ψm versus
γ p. The evolution parameter for shear yielding, γ p, is defined incrementally by

�γp =
√
(�ε

dp

1 )2 + (�ε
dp

2 )2 + (�ε
dp

3 )2/
√

2 (1.311)

where �εdpi , i = 1, 3 are the principal, deviatoric, plastic shear-strain increments.

The model parameter flag-dilation must be set to zero to activate this option. If flag-dilation = 0 and
no table is provided, it is then assumed that dilation is equal to the input value for ultimate dilation
property set with dilation. Note that dilation is not used if a dilation table is provided.

Two built-in dilation laws are also available. A law based on Rowe’s dilatancy theory (Rowe 1962)
is used if flag-dilation = 1. This is the default setting. Alternatively, a simple step function can be

UDEC Version 7.0



BLOCK CONSTITUTIVE MODELS 1 - 169

used, in which ψm is zero for φm < φcv , where φcv is a constant specified by the user, and ψm
is equal to the ultimate dilation value ψf (set by dilation) for values of mobilized friction larger
than ψcv . The model property flag-dilation must be set to 2 to activate this option. The additional
constraint that ψm cannot exceed φm (to prevent unwanted generation of energy from taking place)
is enforced internally by the code.

1.6.11.3 Tensile Yield Criterion and Flow Rule

The tensile yield function is the same as that used for the cap-yield model, and is of the form

f t = σ t − σ3 (1.312)

The tensile strength, σ t , is given in terms of the plastic tensile-strain measure, ept , and input by
means of a user-defined table. If no table is provided, it is assumed that tensile strength is constant,
and equal to the input value of the tensile strength property.

The evolution parameter for tensile yielding is the modulus of plastic tensile strain, ept . The
increment of plastic tensile strain is defined as

�ept = �e
pt

3 (1.313)

where �ept3 is the increment of tensile plastic strain in the direction of the major principal stress
(recall that tensile stresses are positive).

1.6.11.4 Friction Hardening

For most soils, the plot of deviatoric stress versus axial strain obtained in a drained triaxial test can
be approximated by a hyperbola. The cap-yield-simplified model incorporates a friction strain-
hardening law to capture this behavior. In this formulation, the mobilized friction angle, φm, is
given in terms of plastic shear strain measure, γ p, by means of the following differential law, similar
to the one implemented by Byrne et al. (2003) in their UBCSAND liquefaction model:

d(sin φm) = Gp

p′
m

d(γ p) (1.314)

where the plastic shear modulus, Gp, is given by

φm ≤ φf : Gp = Ge
(

1 − sin φm
sin φf

Rf

)2
(1.315)

In this formula, Ge is the elastic tangent shear modulus, φf is the ultimate friction angle, and Rf
(the failure ratio) is a constant smaller than 1 (0.9, in most cases) used to assign a lower bound for
Gp.
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According to Eq. (1.303) the elastic tangent shear modulus is a function of p′
m:

Ge = Gref pref

(
p′
m

pref

)n
(1.316)

After substitution of Eq. (1.316) into (1.315), the resulting expression in (1.314), and rearranging
terms, we obtain

d(γ p) = p′
m

Ge

d(sin φm)(
1 − sin φm

sin φf
Rf

)2
(1.317)

Using φm = 0 at γ p = 0, integration of this equation gives

γ p = p′
m

Ge

sin φf
Rf

( 1

1 − sin φm
sin φf

Rf
− 1

)
(1.318)

Solving for sin φm, we obtain

sin φm = sin φf
Rf

(
1 − 1

1 + γ p G
e

p′
m

Rf
sin φf

)
(1.319)

This expression is used in the cap-yield-simplified model to calibrate mobilized friction in terms of
plastic shear strain. The use of this hardening law for modeling primary loading in a triaxial test
produces a hyperbolic-type curve of deviatoric stress versus axial strain.

1.6.11.5 Overconsolidation

The initial state of a normally consolidated soil or an overconsolidated soil is prescribed by speci-
fying an initial value to the friction property that is equal to or larger than the normally consolidated
value, φnc, respectively. For normal consolidation Eqs. (1.307) and (1.308) give

φnc = arcsin
σ ′

1 − σ ′
3

σ ′
1 + σ ′

3
(1.320)

The material behavior is considered to be elastic for stress points below the current yield envelope.

The initial value of friction must be smaller than the ultimate value, φf . (An upper bound equal
to φf is set automatically by the model.) An initial value of the evolution parameter, γ p, that is
consistent with the specified initial value of mobilized friction angle is also assigned automatically.
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1.6.11.6 Shear-Induced Compaction and Dilation

A certain amount of irrecoverable volumetric strain, ep, is expected to take place as a result of soil
shearing. Also, under small monotonic shear strains, there is a tendency for the soil skeleton to
contract due to grain rearrangements. For larger shear strains, the soil skeleton may dilate if the soil
is dense, as a result of grains riding over each other. A dilation strain-hardening law is incorporated
in the logic to model this behavior.

The shear-hardening flow rule implemented in the cap-yield-simplified model has the form

�ep = �γp sinψm (1.321)

where�ep is the plastic volumetric strain increment,�γp is the plastic shear strain increment, and
ψm is the (mobilized) dilation angle.

One possible way to characterize ψm is to adopt an equation based on Rowe’s stress-dilatancy
theory (Rowe 1962). According to this theory, there is a (constant-volume) friction angle, φcv ,
below which the material contracts (i.e., for φm ≤ φcv), while for higher stress ratios (i.e., for
φm > φcv), the material dilates. The equation has the form

sinψm = sin φm − sin φcv
1 − sin φm sin φcv

(1.322)

where

sin φcv = sin φf − sinψf
1 − sin φf sinψf

(1.323)

and φf and ψf are ultimate (known) values of friction and dilation, respectively.

Dilation is evaluated in terms of plastic shear strain based on the last two equations, and the assumed
relation between φm and γ p reported in Eq. (1.318). Rowe’s dilation law is selected by setting the
material property flag-dilation = 1 (default value). A simple dilation law also can be used, in which
ψm = 0 forφm ≤ φcv , andψm = ψcv forφm ≥ φcv; the option is activated by specifying flag-dilation
= 2. Finally, the user may choose to define an alternative dilation law by creating an input table of
dilation values versus plastic shear strain. The model property flag-dilation must be set to zero to
activate this option.
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1.6.11.7 Correlation between cap-yield-simplified Properties and Duncan and Chang Properties

A parallel can be drawn, for particular cases, between properties used in the hyperbolic stress-strain
relations reported in Duncan et al. (1980) for the Duncan and Chang model and the properties of the
cap-yield-simplified model. The correlations depend on property input; they are listed in Tables 1.4
and 1.5.

Table 1.4 Property correlation for input of Kref and Gref

Model m = n No Dilation

Duncan and Chang Kur ,n Kb,m

cap-yield-simplified
9Kref Gref

3Kref+Gref , n Kref ,m

Table 1.5 Property correlation for input of Eref and νref

Model m = n No Dilation

Duncan and Chang Kur ,n Kb,m

cap-yield-simplified Eref ,n
Eref

3(1−2νref )
, m
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1.6.11.8 Calibration of the cap-yield-simplified Model to Triaxial Test Results on Nevada Sand

Results of drained triaxial tests at constant mean effective stress, p′, on Nevada sand are used to
provide an example of the methodology that can be used to calibrate the properties of the cap-yield-
simplified model. The test results are listed in data files “40-40.log,” “40-80.log” and “40-160.log,”
and correspond to values of the mean stress at 40 kPa, 80 kPa and 160 kPa, respectively. The
relative density of the sand for these tests is 40%. The test results consist of three sets of data:

(1) deviatoric stress versus mean effective stress;

(2) deviatoric stress versus axial strain (up to 25% strain); and

(3) volumetric strain versus axial strain (up to 25% strain).

For this calibration exercise, we consider axial strains up to 5%, because strains are not expected
to develop above this level for the intended (static, drained) application. The Nevada sand appears
to be purely frictional in character. Also, two main features characterize the data: (1) hyperbolic
behavior is observed in the plot of deviatoric stress versus axial strain, and (2) bilinear dilatant
behavior is exhibited by the plot of volumetric strain versus axial strain. The cap-yield-simplified
model capabilities, including friction hardening and variable dilation, are used to simulate these
features.

The elastic tangent shear and bulk moduli are functions of the initial mean effective stress according
to Eqs. (1.303) to (1.305). For friction hardening we use the built-in law Eq. (1.318). The dilation
law is bilinear; its value is zero below the stress ratio φ = φcv , and a constant, ψf , above it:

ψ = 0 φ < φcv

(1.324)
ψ = ψf φ ≥ φcv

The failure ratio, Rf , is 0.99 for this exercise. Eight properties must be defined:

Eref , ν, pref , φf , ψf , φcv,m, n

Calibration of the model properties is done in two steps. First, using theoretical considerations
and values recorded in the literature, we derive a first estimate for the property values. Second,
we improve on the estimates by modeling the triaxial experiments numerically and matching the
results obtained in the laboratory.

First Estimates – The value of ultimate friction is derived from a linear fit to plots of deviatoric
stress, q, versus mean effective stress, p′, obtained from the laboratory tests. The linear fit to
maximum q at given p′ provides a value for the maximum stress ratio, a,
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a = q

p′ (1.325)

From the definition of the purely frictional Mohr-Coulomb criterion, we obtain the relation

sin φf = 3a

6 + a
(1.326)

from which the ultimate friction angle, φf , can be derived. The estimated value forDr = 40% sand
is φf = 34◦.

The value of ultimate dilation angle is derived from the slope, b, of a linear fit to the laboratory curves
of minus volumetric strain versus axial strain. To relate b to ψf , we use, as a first approximation,
the expression for bilinear idealization of triaxial stress results provided by Vermeer and deBorst
(1984):

b = 2 sinψf
1 − sinψf

(1.327)

The first estimate for ψf is 8.2◦ for Dr = 40% sand.

To estimate the parameter φcv for a given Dr , we first derive the maximum value of axial strain,
ε∗a , at which the volumetric strain is negligible from the laboratory plots of volumetric strain versus
axial strain at a given p′. From the knowledge of axial strain, ε∗a , we estimate q from the laboratory
plot of deviatoric stress versus axial strain at that p′, and then the ratio q/p′. Three values of the
ratio are available (one at each p′). The mean value of q/p′ is used to calculate the corresponding
friction angle using Eq. (1.326), where φf now is replaced by φcv , and a by the average q/p′ (see
Eq. (1.325)). The estimate is φcv = 27.7◦ for Dr = 40%.

The first guess for Eref is taken as 1200 for Dr = 40% at atmospheric pressure; this value is
equivalent to that used in the triaxial numerical experiment for dense sand listed in Example 1.9.

The value of ν for this exercise is arbitrarily selected as 0.35. Also, we select n = m = 0.5.
The elastic constant, Eref , is estimated by matching the initial slopes of q versus axial strain
curves obtained in similar triaxial tests (under constant mean stress) performed numerically and
in the laboratory. These estimates may not be very accurate; more robust estimates for the elastic
constants can be obtained from laboratory results of small unloading-reloading excursions. Such
results were not available for this example.

Numerical Triaxial Experiments – Triaxial experiments are conducted numerically at the three
levels of mean stress (40, 80 and 160 kPa) for the Dr = 40% sand. The axisymmetric geometry
configuration is selected for the strain-controlled simulations. A servo control is applied to maintain
the mean stress constant during the numerical experiments.
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The estimates for model properties are used to conduct the numerical tests, and the test results are
compared to the available laboratory data (imported into tables). The properties are adjusted (in
the order listed above), and the numerical experiment is repeated until a satisfactory curve fitting is
obtained.

The results of the curve fitting experiment are listed in Table 1.6.

Table 1.6 Calibration results

Dr Eref ν φf ψf φcv m n

40% 1800 0.35 34◦ 7.5◦ 28◦ 0.5 0.5

A comparison between numerical predictions using the calibrated properties and laboratory re-
sults is shown in Figures 1.53 through 1.55. Note that the soil-mechanics convention for positive
stress/strain in compression is adopted in these plots. (Dilation is negative.) The comparison is
quite reasonable. The data file for this comparison example is listed in Example 1.11.

Figure 1.53 Deviatoric stress versus mean stress for Dr = 40% – comparison
between laboratory (line) and numerical (cross) results
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Figure 1.54 Deviatoric stress versus axial strain (in %) for Dr = 40%
– comparison between laboratory (line) and numerical (cross)
results

Figure 1.55 Volumetric strain (in %) versus axial strain (in %) for Dr = 40%
– comparison between laboratory (line) and numerical (cross)
results
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Example 1.11 Drained triaxial test at constant mean pressure – Dr = 40 – Chsoil model

model new
;file: chsoil.dat
;
Model title ’Drained triaxial test at constant mean pressure’
; Relative density (DR) = 40%
; CHSOIL model
;
fish define setup
_nu = 0.35
_Eref = 1800.
_Pa = 100.
_m = 0.5
_n = 0.5
_friu = 34.
_dilu = 7.5
_ficv = 28.
_Rf = 0.99
_fric = 0.
_coh = 0.
_yvel = -6.7e-5
_gain = 1.
high_vel = 8.0e-5
_p0 = 40.
_nt = 2
_xvel = -_yvel/2.0
end
@setup
;
block config axisymmetry
block tolerance corner-round-length 5E-3
block tolerance minimum-edge-length 1E-2
block create polygon 0 0 0 5 1 5 1 0
block cut crack 0 1 1 1 join
block cut crack 0 2 1 2 join
block cut crack 0 3 1 3 join
block cut crack 0 4 1 4 join
block zone gen edge 1.0
block zone group ’mat1’
block zone cmodel assign cap-yield-simplified
block zone prop young-reference=1800. poisson=0.35 ...

pressure-reference=100. failure-ratio=0.99 friction=34.0 ...
exponent-bulk=0.5 exponent-shear=0.5 ...
dens=1000. cohesion=0. dilation-mobilized=0. friction-mobilized=0.
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block zone prop flag-dilation 2 range pos-y 0 1
block zone prop flag-dilation 3 range pos-y 2 3
block zone prop flag-dilation 4 range pos-y 4 5
block zone prop pressure-initial= 40. range pos-y 0 1
block zone prop pressure-initial= 80. range pos-y 2 3
block zone prop pressure-initial=160. range pos-y 4 5
block contact prop mat 1 st-n 1e8 st-s 1e8

block zone group ’Null’ range pos-y 1 2
block zone group ’Null’ range pos-y 3 4
block zone cmodel assign null range group ’Null’
;
block gridpoint apply velocity-x 0
block gridpoint apply velocity-y 0
block gridpoint apply velocity-x @_xvel range pos-x 0.99 1.01
block gridpoint apply velocity-y @_yvel range pos-x 0 1 pos-y 0.99 1.01
block gridpoint apply velocity-y @_yvel range pos-x 0 1 pos-y 2.99 3.01
block gridpoint apply velocity-y @_yvel range pos-x 0 1 pos-y 4.99 5.01
;
block insitu stress -160.0 0.0 -160.0 stress-ZZ -160.0 ...

range pos-x 0 1 pos-y 4 5
block insitu stress -80.0 0.0 -80.0 stress-ZZ -80.0 ...

range pos-x 0 1 pos-y 2 3
block insitu stress -40.0 0.0 -40.0 stress-ZZ -40.0 ...

range pos-x 0 1 pos-y 0 1
[global _strain=array.create(4)]
call ’z_strain.fis’
fish define _getStress

ib = block.near(_x, _y)
iz = block.zone(ib)
count = 0
_sxx = 0
_syy = 0
_szz = 0
_vsi = 0
_sxx = block.zone.stress.xx(iz)
_syy = block.zone.stress.yy(iz)
_szz = block.zone.stress.zz(iz)
z_strain

block.zone.strain.increment(iz,_strain)
_vsi = 2*zs_xx + zs_yy
;_vsi = 2*_strain(1) + _strain(4)

end
;
; --- servo for constant mean stress ---
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fish define _keyPoints
_g10 = block.gp.near(1,0)
_g11 = block.gp.near(1,.9)
_b_g10 = block.gp.boundary.corner(_g10)
_b_g11 = block.gp.boundary.corner(_g11)

;
_g12 = block.gp.near(1,2)
_g13 = block.gp.near(1,2.9)
_b_g12 = block.gp.boundary.corner(_g12)
_b_g13 = block.gp.boundary.corner(_g13)

;
_g14 = block.gp.near(1,4)
_g15 = block.gp.near(1,4.9)
_b_g14 = block.gp.boundary.corner(_g14)
_b_g15 = block.gp.boundary.corner(_g15)

end
@_keyPoints

;
fish define servo_sig0

while_stepping
_x = 0.5
_y = 0.5
_getStress
_sig=-(_sxx + _syy + _szz)/3.
_svel=block.gp.vel.x(_g10)-_gain*(1.-_sig/40.)
if math.abs(_svel) > high_vel then

_svel=math.sgn(_svel)*high_vel
end_if
block.bou.vel.x(_b_g10) = _svel
block.bou.vel.x(_b_g11) = _svel

;
_x = 0.5
_y = 2.5
_getStress
_sig=-(_sxx + _syy + _szz)/3.
_svel=block.gp.vel.x(_g12)-_gain*(1.-_sig/80.)
if math.abs(_svel) > high_vel then

_svel=math.sgn(_svel)*high_vel
end_if
block.bou.vel.x(_b_g12) = _svel
block.bou.vel.x(_b_g13) = _svel

;
_x = 0.5
_y = 4.5
_getStress
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_sig = -(_sxx + _syy + _szz)/3.
_svel = block.gp.vel.x(_g14) - _gain*(1.-_sig/160.)
if math.abs(_svel) > high_vel then

_svel=math.sgn(_svel)*high_vel
end_if
block.bou.vel.x(_b_g14) = _svel
block.bou.vel.x(_b_g15) = _svel

end
;
fish define _q1

_x = 0.5
_y = 0.5
_getStress
_q1 = _sxx - _syy
_p1 = -(_sxx + _syy + _szz)/3.
eps_v1 = _vsi*100.
eps_a1 = block.gp.disp.y(_g11)*100

;
_x = 0.5
_y = 2.5
_getStress
_q2 = _sxx - _syy
_p2 = -(_sxx + _syy + _szz)/3.
eps_v2 = _vsi*100.
eps_a2 = block.gp.disp.y(_g13)*100

;
_x = 0.5
_y = 4.5
_getStress
_q3 = _sxx - _syy
_p3 = -(_sxx + _syy + _szz)/3.
eps_v3 = _vsi*100.
eps_a3 = block.gp.disp.y(_g15)*100

end
;
hist int 1300
;
fish history @_q1
fish history @_p1
fish history @eps_v1
fish history @eps_a1
;
fish history @_q2
fish history @_p2
fish history @eps_v2
fish history @eps_a2
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;
fish history @_q3
fish history @_p3
fish history @eps_v3
fish history @eps_a3
;
block smallstrain on
block cycle 100000
;
fish define read_in

array in_line(1)
oo=file.open(’40-40.log’,0,1)
loop kk (1,232)

oo=file.read(in_line,1)
_astr=string.token(in_line(1),1)
_q =string.token(in_line(1),2)
_p =string.token(in_line(1),3)
_vs =string.token(in_line(1),4)
if _astr < 5.01 then

table.x(11,kk)=_astr
table.y(11,kk)=_q
table.x(12,kk)=_astr
table.y(12,kk)=_vs
table.x(13,kk+1)=_p
table.y(13,kk+1)=_q

end_if
end_loop
oo=file.close

;
oo=file.open(’40-80.log’,0,1)
loop kk (1,306)

oo=file.read(in_line,1)
_astr=string.token(in_line(1),1)
_vs =string.token(in_line(1),2)
_q =string.token(in_line(1),3)
_p =string.token(in_line(1),4)
if _astr < 5.01 then

table.x(21,kk)=_astr
table.y(21,kk)=_q
table.x(22,kk)=_astr
table.y(22,kk)=_vs
table.x(23,kk+1)=_p
table.y(23,kk+1)=_q

end_if
end_loop
oo=file.close
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;
oo=file.open(’40-160.log’,0,1)
loop kk (1,258)

oo=file.read(in_line,1)
_astr=string.token(in_line(1),1)
_q =string.token(in_line(1),2)
_p =string.token(in_line(1),3)
_vs =string.token(in_line(1),4)
if _astr < 5.01 then

table.x(31,kk)=_astr
table.y(31,kk)=_q
table.x(32,kk)=_astr
table.y(32,kk)=_vs
table.x(33,kk+1)=_p
table.y(33,kk+1)=_q

end_if
end_loop
oo=file.close

end
@read_in
;
fish define _copyHistory

loop _n (1,12)
_tabNum = 200 + _n
command

history export @_n table @_tabNum
endcommand

endloop
_rows = table.size(201)
loop _n (1, _rows)

table.x(111,_n) = -table.y(204,_n)
table.y(111,_n) = table.y(201,_n)
table.x(112,_n) = -table.y(204,_n)
table.y(112,_n) = table.y(203,_n)
table.x(113,_n) = table.y(202,_n)
table.y(113,_n) = table.y(201,_n)

;
table.x(121,_n) = -table.y(208,_n)
table.y(121,_n) = table.y(205,_n)
table.x(122,_n) = -table.y(208,_n)
table.y(122,_n) = table.y(207,_n)
table.x(123,_n) = table.y(206,_n)
table.y(123,_n) = table.y(205,_n)

;
table.x(131,_n) = -table.y(212,_n)
table.y(131,_n) = table.y(209,_n)
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table.x(132,_n) = -table.y(212,_n)
table.y(132,_n) = table.y(211,_n)
table.x(133,_n) = table.y(210,_n)
table.y(133,_n) = table.y(209,_n)

;
endloop

end
@_copyHistory

model title ’Drained triaxial test at constant mean pressure - DR = 40%’
table 11 label ’40-40 lab:q vs e_a’
table 21 label ’40-80 lab:q vs e_a’
table 31 label ’40-160 lab:q vs e_a’
table 111 label ’40-40 num:q vs e_a’
table 121 label ’40-80 num:q vs e_a’
table 131 label ’40-160 num:q vs e_a’
table 12 label ’40-40 lab:e_vol vs e_a’
table 22 label ’40-80 lab:e_vol vs e_a’
table 32 label ’40-160 lab:e_vol vs e_a’
table 112 label ’40-40 num:e_vol vs e_a’
table 122 label ’40-80 num:e_vol vs e_a’
table 132 label ’40-160 num:e_vol vs e_a’
table 13 label ’40-40 lab:q vs p’
table 23 label ’40-80 lab:q vs p’
table 33 label ’40-160 lab:q vs p’
table 113 label ’40-40 num:q vs p’
table 123 label ’40-80 num:q vs p’
table 133 label ’40-160 num:q vs p’
model save ’dr40.sav’
return
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1.6.11.9 block zone cmodel Command and Property Keywords

Cap-yield-simplified (Chsoil) – block zone cmodel assign cap-yield-simplified

(1) bulk-reference bulk modulus number, Kref
(2) cohesion cohesion, c
(3) density mass density, ρ
(4) dilation ultimate dilation angle, ψf
(5) failure-ratio failure ratio, Rf
(6) flag-dilation = 0 for mobilized dilation angle, ψm, equal to input value, dilation

or a function of plastic shear strain if table is input with table-dilation
= 1 for mobilized dilation angle, ψm, characterized by Rowe’s
stress-dilatancy theory
= 2 for mobilized dilation angle, ψm = 0 if φm < φcv ,
and ψm = ultimate dilation value, ψf , if φm ≥ φcv

(7) friction ultimate friction angle, φf
(8) friction-critical constant used in dilation laws (flag-dilation = 1 or 2), φcv
(9) exponent-bulk bulk modulus exponent, m
(10) exponent-shear shear modulus exponent, n
(11) poisson Poisson’s ratio, ν
(12) pressure-initial initial effective pressure, p′

m

(13) pressure-reference reference pressure, pref
(14) shear-reference shear modulus number, Gref
(15) table-cohesion number of table relating cohesion, c, to plastic shear strain
(16) table-dilation number of table relating mobilized dilation angle to plastic shear strain
(17) table-tension number of table relating mobilized tensile strength to plastic

tensile strain
(18) tension tensile strength, σ t

(19) young-reference Young’s modulus number, Eref

The following properties can be printed, plotted or accessed via FISH.

(1) bulk-mobilized mobilized elastic bulk modulus, Ke

(2) dilation-mobilized mobilized dilation angle, ψm
(3) friction mobilized friction angle, φm
(4) shear-mobilized mobilized elastic shear modulus, Ge

(5) strain-shear-plastic accumulated plastic shear strain, εps

(6) strain-volumetric-plastic accumulated plastic volumetric strain, εpc
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