FISH REFERENCE 2-1

2 FISH REFERENCE

2.1 Introduction and Overview

This section contains a detailed reference to the FISH language. Following the introduction, Sec-
tion 2.2 describes the rules of the language and how variables and functions are used. Section 2.3
explains FISH statements, and Section 2.4 describes how the FISH language links with UDEC.
Predefined FISH variables, functions and arrays are described in Section 2.5. Section 2.6 discusses
extensions to FISH for file manipulation, the use of which generally requires a reasonable under-
standing of programming techniques and constructs (although FISH can be used without reference
to these extensions).

FISH is a programming language embedded within UDEC that enables the user to define new
variables and functions. These functions may be used to extend UDEC’s usefulness or add user-
defined features. For example, new variables may be plotted or printed, special block generators
may be implemented, servo control may be applied to a numerical test, unusual distributions of
properties may be specified and parameter studies may be automated.

FISH is a “compiler” (rather than an “interpreter”). Programs entered via a UDEC data file are
translated into a list of instructions (in “pseudo-code”) stored in UDEC’s memory space; the
original source program is not retained by UDEC. Whenever a FISH function is invoked, its
compiled pseudo-code is executed. The use of compiled code — rather than interpreted source code
— enables programs to run much faster. However, unlike a compiler, variable names and values
are available for printing at any time; values may be modified by the user by using UDEC’s SET
command.

FISH programs are simply embedded in a normal UDEC data file: lines following the DEFINE
command are processed as a FISH function; the function terminates when the END command is
encountered. Functions may invoke other functions, which may invoke others, and so on. The
order in which functions are defined does not matter as long as they are all defined before they are
used (e.g., invoked by a UDEC command). Since the compiled form of a FISH function is stored in
UDEC ’s memory space, the SAVE command saves the function and the current values of associated
variables.

UDEC Version 7.0

2-2 FISH in UDEC

2.2 FISH Language Rules, Variables and Functions

2.2.1 Lines

FISH programs can either be embedded in a normal UDEC data file or they may be entered directly
from the keyboard. Lines following the DEFINE command are taken to be statements of a FISH
function; the function terminates when the END command is encountered. A valid line of FISH
code must take one of the following forms.

1. The line starts with a statement, such as IF, LOOP, etc. (see Section 2.3).

2. The line contains one or more names of user-defined FISH functions, separated
by spaces —e.g.,

fun_ 1 fun_ 2 fun_3

where the names correspond to functions written by the user; these functions
are executed in order. The functions need not be defined prior to their reference
on a line of FISH code (i.e., forward references are allowed).

3. The line consists of an assignment statement (i.e., the expression on the right
of the = sign is evaluated and the value given to the variable or function name
on the left of the = sign).

4. The line consists of a UDEC command, provided that the line is embedded in a
section of FISH code delimited by the COMMAND — ENDCOMMAND statements
(see Section 2.3.3).

5. The line is blank or starts with a semicolon.

FISH variables, function names and statements must be spelled out in full; they cannot be truncated
as in UDEC commands. Lines must contain fewer than 80 characters. No continuation lines
are allowed; intermediate variables may be used to split complex expressions. FISH is “case-
insensitive” by default (i.e., it makes no distinction between uppercase and lowercase letters); all
names are converted to lowercase letters. Spaces are significant (unlike in FORTRAN) and serve
to separate variables, keywords, and so on; no embedded blanks are allowed in variable or function
names. Extra spaces may be used to improve readability (for example, by indenting loops and
conditional clauses). Any characters following a semicolon (;) are ignored; comments may be
embedded in a FISH program by preceding them with a semicolon. Blank lines may be embedded
in a FISH program.

UDEC Version 7.0

FISH REFERENCE 2-3

2.2.2 Reserved Names for Functions and Variables

Variable or function names must start with a non-number, and must not contain any of the following
symbols.

L F 4+t =<s>H# ()[]1@ ;" "

User-defined names can be any length but they are truncated in printout and in plot captions, due
to line-length limitations. In general, names may be chosen arbitrarily, although they cannot be the
same as a FISH statement (see Section 2.3) or a predefined variable or function (see Section 2.5).
There are also many other words used in UDEC input that should be avoided. The list contained
in Table 2.1 shows all words that could give rise to a conflict if used to name a FISH variable
or function. However, the potential conflict depends on the way the chosen name is used. For
example, the word gravity could be used as a FISH variable, provided that it is simply referred to
inside a FISH function; a conflict would arise only if it is necessary to use the SET command to set
its value, since gravity is a valid argument to the SET command. Similarly, it may be impossible to
print the value of a FISH variable if its name is the same as a parameter for the PRINT command.
If in doubt, avoid any of the names listed in Table 2.1, or contractions of the names (since UDEC
allows truncation of keywords and commands). A simple way to avoid name conflicts would be to
begin all FISH variable and function names with an underscore character.

UDEC Version 7.0

2-4

FISH in UDEC

Table 2.1 List of words in UDEC and FISH that may conflict with chosen names
Name Name Name Name Name Name
-nwppressure atan barton border c_sdis cell
-ppressure atan2 base both c_sforce cf_axi
a_us atblock bb bou_gp c_type cf_cell
a_wipp atcontact bbdamage bou_head cX cf_creep
a3 atdomain bbdil bou_near cy cf_fluid
a4 atgridpoint bbdmax bou_xreaction ca85 cf_pstress
abc atzone bbdmin bou_yreaction cable cf_tflow
above automatic bbdplateau bound cable_elem_head cf_thermal
abs autoname bbdtable boundary cable_node_head cforce
absolute avelocity bbjcsn box call cfriction
acap average bbjren bracket cap-pressure change
acos axial bbkni brown cap85 char
act_energy azero bbnc brvelocity capmin checkesc
add b_area bbsc bvelocity capratio chkesc
add_dil b_bex bbunc btol case circular
added_mass b_cons bbunl bulk case_of clear
address b_corner bbunm bulk_mod caseof clemin
add_stress b_dsf bbunpc bulkw cave clipboard
adev b_extra bbusc bw cavi clock
afailure b_fix bbusm bxload cb_area close
age b_gp bbusmb bxvelocity cb_density closure
alias b_group bbvirr byload cb_fstrain code_name
alpll b_mass bbvmi byvelocity cb_kbond cohesion
alpl12 b_mat bcap cbl cb_sbond cohw
alp22 b_moi be c_b2 cb_spacing color
alp33 b_mom beam c_cons cb_thexp com
and b_near beboundary cdl cb_tol combined
angle b_next begin cd2 cb_ycomp command
anis b_rvel beinterface c_extra cb_yield compressible
annulus b_type below c_group cb_ymod conductivity
aperture b_wipp beta cjex cb85 config
apmode b_x bfill c_length cc85 connect
apply b_xforce bfm c_link1 ccdifference constant
aptable b_xload bfx c_link2 ccfail constitutive
arc b_xvel bfy c_mat ccmean constitutive_model
area b_y biot_c c_ndis ccohesion contact_head
ares b_yforce black c_near cesl contacts
array b_yload block_head c_next ccs2 continue
arrow b_yvel blocks c_nforce cd convection
asin b_zone blue cnx cd85 copy
associated back bminw c_ny cdilation cor_block
at background bmp c_obj_type cdisplacement cor_bou

UDEC Version 7.0

FISH REFERENCE

2-5

Table 2.1 List of words in UDEC and FISH that may conflict with chosen names (cont.)

Name Name Name Name Name Name
cor_extra ctable directory end ff_density fractures
cor-gp ctensile displacement end_case ff_nu fracz
cor_link ctension dist end_command ff_shearmod free
cor_near custl div end_factor ff_ymod freeze_con
cor_obj_type cust2 dlist end.if ffield friction
cor.rlink cutting dil end_loop ffsxx fstrain
cor_x cw85 dmagnitude end_section ffsxy ftable
cor_xdis cy dmaterial endcase ffsyy ftemp
cor_xvel cyan dnumber endcommand ffxacceleration ftime
cor.y cycle domain_head endif ffxdisplacement fullpalette
cor_ydis cycles domains endloop ffxvelocity function
cor_yvel cydamage druck endsection ffyacceleration fupd
corners cysub druckO energy ffydisplacement fvelocity
cos d_contact dscan epll ffyvelocity g

cosine d_extra dshear epl2 field gl2
coulomb d_fix dtable ep22 filcolor gap

cperm d_near dtflow ep33 file gas
cppudm d_next dump eps filename gas_alpha
cptable d_obj_type dxf erase fill gas_bulkmin
cr85 d_pp dy error filtable gas_c
crack d_temp dy_state et_plastic find gas_constant
crack_flow d_vol e ev_plastic first_node gas_densitymin
crack_store d_wipp e_dot_star evol fish gas_flow
crdt dx e_plastic exclude fix gcap

creep dy e_primary exit flies gen
creeptime dami e_tension exp float generate
Cross damping el expa flow geom
crtdel debug e2 extend flowrate geps
crtime def echo exx flowtime get_mem
cs_cftable define edge exy fluid gfailure
cs_ncohesion deformable edgemax eyy fluid_bulk giic
cs_nfriction degrad edxx f_prop fluid_density giicpath
cs_nstiffness degrees edxy failure fluid_dt_type ginterface
cs_scohesion delc edyy fang flux gp-addxmass
cs_sctable delete eff fast_read fmem gp-bou
cs_sfriction delt elastic fbcontour fobl gp-corner
cs_sftable density element fbflow fobu gp-dsf
cs_spacing deterministic elsemin fboundary force gp-extra
cs_stiffness development else fc_arg fos gp-mass
cscan diamond emf feut fp gp-near
cscint dilation emod fdilation fracb gp-next
cstate dim empd ff_bulkmod fraction gpX

UDEC Version 7.0

2-6

FISH in UDEC

Table 2.1 List of words in UDEC and FISH that may conflict with chosen names (cont.)

Name Name Name Name Name Name
gp-xdis hmaximum inverse join_jks list max_length
gpxforce hoek iset join_ratio Imagenta maxdt
gp-xvel hold ishear joined Imul maxgiicmem
gp-y hp7550a istrain joint In maxima
gp-ydis hpgen it jointid Inslope maximum
gp-yforcel hpgl iterations jperm lo maxjkn
gp-yvel hpp itmax ipg loads maxjks
gpeq hread iwhite jplot local maxmech
gpforces hydraulic j-model jpmode location maxpsi
gpneg i j-nstress jproperty log mech
gpsource ibou_head j-prop jptable logfile mem
gradient id jSflow jrco loop memory
grand idilation jangle jregion lose_mem message
grav_x if jc4 jrepath Ired mevol
grav.y if_cohesion jcs jrescohesion Isactiv min
gravity if_dilation jcoh jrfriction Itype min_length
gray if_friction jcohesion jrough m_bulk mindt
grayscale if_kn jeondf jrtensile m_cohesion minimum
grdexp if ks jeonstitutive jset m_density minjkn
green if_tensile jcso jsr m_dilation minjks
grhist ifailure jdelete jtensile m_friction mink

grid imem jdilation jtension m_jcohesion minkjkn
gridpoint impermeable jdisplacement k m_jdilation minkjks
groups implicit jen k11 m_jfriction minterface
grout impulse jes k12 m_jkn mixed
grtable in jfriction k22 m_jks model

gui include jhistory key m_jrescoh mohr
ggvel incompressible jif kn m_jrfric moment
gvelocity increment jkn ks m_jrtens moment_thrust
gwflow inertia jks ktable m_jrtension mov

half inexca jline label m_jtension movie
hard information jmat large m_shear mptable
hbm initemperatur jmatdf last_node m_tension mscale
hbs initial jmaterial latency magenta mtable

hd inormal jmodel Iblue magnify mtype
head insert jmp Icyan manual mubex
heading inside jmtable left maperture mubim
help insitu jndisp legend mass multi

hide int join lgreen mat multiplier
hinterface interface join_block line match multiply
history interior join_contact link material n

hl interval join_jkn linked max n_wipp

UDEC Version 7.0

FISH REFERENCE

Table 2.1 List of words in UDEC and FISH that may conflict with chosen names (cont.)

Name Name Name Name Name Name
name nstable pexfile quit resolution section
ncharres nstep pen quitonerror restart security
ncycle nstress percent r-aexp restore seed
ndisplacement ntcyc permeable r_astiff return seek

neg nther perturb r_head rezone seepage
neighbor null pfix r_length rfriction segment
nerr number pfree r_prop right separation
netserver nvelocity pgradient r_rfac rigid set

new nwbulk phir r_sexp rlength set_ref
newconstitutive nxcperm pi r_spacing rockbolt sforce
newmaterial nwdensity pin r_sstiff rot sgn

nflow nwflow plastic r_str rotate sgrid
nfmech nwfluid pline r_type rotation shape
nforce nwimpermeable plot r_uaxial round shear
ngicap nwjperm pmoment r_shear rrfac shear_mod
nhistory nwpermeable png radiation rset shistory
njangle nwppressure point radius resxp show
nmech nwpxgradient postscript raexp rshear sigl
nmultiply nwpygradient PP random rsstiff sig2
no_layer off ppressure range rstr sigmac
no.restore offset pri2 rastiff rstrain sigz
noage omega pratio rat rtable sin

nocon on pre_parse rate_dependent rtension sine
nodal only pressure ratio rtol single
node oorc principal rcohesion ruzxial size

nodis open print reaction run skip
nofix or processors read rushear slave
noheading origin projected red rvel slip

nojit out propcontour ref s3t small
nonwetting outer_domain property ref_loc salztyp smat
noop output ps reftime sampled smaximum
noopen outside psrotate region satmax sminimum
normal overlap pstatic reinforce satmin smultiply
noscale overwrite psxscal rel_version saturation snode

not ovyol psxshift relax satxgrad sntable
nowhite p-stress psyscal reldisplacement satygrad sol_fmag
npens paginate psyshift relstress save sol_fob
nphi parse ptable remove scale sol_ratio
nphir partial ptol rename sclin sol_rloc
npoints pause pxgradient replot sclose sol_rmax
npsi pcmax pygradient reset sdifference solve
nshift pcx quad residual sdisplacement solve_lcal

UDEC Version 7.0

2-8

FISH in UDEC

Table 2.1 List of words in UDEC and FISH that may conflict with chosen names (cont.)

Name Name Name Name Name Name
solve_ratio steps tcut udm xacceleration ytable
sopen stiff tdel ufriction Xc yvelocity
source stiffness temp_wipp umul xcond yviscosity
spacing stld temperature unbal xcondition ywindow
specheat stol tension unbalanced xdis ywtable
sphi stop test unbvolume xdisplacement z_biot
sphi0 str_elem_head text unslave xform z_block
split str_int_head tf upco xfree z_bulk
spsi str_node_head tfix upcon xgradient z_density
sqrt strain tflow updo xgrav Z_extra
square stress tfree uplen xhistory zfsi
sratio stresses tfres upne xload z_fsr
sread string tfstrain urand xmultiply z_gp

ss structural thapp ucohesion xntn z_group
ssi structure thdt urfriction xXrange z_inside
Ssr sub then urtension xreverse Z_mass
sstress sub_version thermal utension xtable z_mat
st_area sup-alfa theta varz xvelocity z-model
st_density sup-alpha thexpansion velocity Xviscosity z_near
st_inertia sup-constant thickness version xwindow z_next
st_pmtable sup_delete thistory vilow y Z_pp
st_prat sup_fmax thrust_shear vmagnitude yacceleration Z_prop
st_rcrack sup-head thtime vmaximum yc Z_rot
st_scresid sup-kn time voltol ycomp z_shear
st_shape sup-spacing title von_mises ycompression z_state
st_shear sup_tmax tol voronoi ycond Z_SXX
st_spacing sup-ycomp top vrat ycondition Z_SXy
st_thexp support trace Vs ydisplacement Z_8yy
st_thickness svelocity transient vsig yellow 7877
st_width swrite transparency water yfree Z_X
st_ycomp SXX trigon well ygradient z.y
st_yield SXy ttable wetting ygrav Z_7eX
st_ymod symfail ttyp while yhistory zdilation
st_yresid system tunnel while_stepping yield Zero
standard Syy twophase whilestepping yielderr zgradient
start S7z type white yload zone
state table ub_angle width ymodulus zone_pp
status table_head ub_spacing windows ymultiply zones
stcbmat table_size ubiquitous wipp yrange zpres
stcon tadd ucohesion write yresid

steady tan ucs X yreverse

step tcontour udilation x0 ystr

UDEC Version 7.0

FISH REFERENCE 2-9

By default, user-defined variables represent single numbers or strings. Multidimensional arrays of
numbers or strings may be stored if the ARRAY statement is used. Section 2.3.1 defines the way
arrays are created and used. At present, there is no explicit printout or input facility for arrays,
but functions may be written in FISH to perform these operations. For example, the contents of a
two-dimensional array (or matrix) may be initialized and printed, as shown in Example 2.1:

Example 2.1 Initializing and printing FISH arrays

def afill ; £1l1ll matrix with random numbers
array var (4,3)
loop m (1,4)
loop n (1,3)

var (m,n) = urand
end_loop
end_loop
end
def ashow ; display contents of matrix
loop m (1,4)
hed = ' !
msg = ' "+string (m)
loop n (1,3)
hed = hed + ' ‘+string(n)
msg = msg + ' '+string(var (m,n))
end_loop
ifm=1
dum = out (hed)
end if

dum = out (msg)
end_loop
end
afill
ashow

Upon execution, the output is

1 2 3
1 5.7713E-001 6.2307E-001 7.6974E-001
2 8.3807E-001 3.3640E-001 8.5697E-001
3 6.3214E-001 5.4165E-002 1.8227E-001
4 8.5974E-001 9.2797E-001 9.6332E-001

UDEC Version 7.0

2-10 FISH in UDEC

2.2.3 Scope of Variables

Variable and function names are recognized globally (as in the BASIC language). As soon as a
name is mentioned in a valid FISH program line, it is thereafter recognized globally, both in FISH
code and in UDEC commands (for example, in place of a number); it also appears in the list of
variables displayed when the PRINT fish command is given. A variable may be given a value in one
FISH function, and used in another function or in a UDEC command. The value is retained until it

is changed. The values of all variables are also saved by the SAVE command and restored by the
RESTORE command.

2.2.4 Functions: Structure, Evaluation and Calling Scheme

The only object in the FISH language that can be executed is the “function.” Functions have no
arguments; communication of parameters is through the setting of variables prior to invoking the
function. (Recall that variables have global scope.) The name of a function follows the DEFINE
command, and its scope terminates with the END command. The END command also serves to
return control to the caller when the function is executed. (Note that the EXIT statement also returns
control — see Section 2.3.2.) Consider Example 2.2, which shows function construction and use.

Example 2.2 Construction of a function

new
def xxx
aa =2 * 3
XXX = aa + bb
end

The value of xxx is changed when the function is executed. The variable aa is computed locally,
but the existing value of bb is used in the computation of xxx. If values are not explicitly given to
variables, they default to zero (integer). It is not necessary for a function to assign a value to the
variable corresponding to its name. The function xxx may be invoked in one of several ways:

(1) as a single word xxx on a FISH input line;

(2) as the variable xxx in a FISH formula —e.g.,
new_var = (sqgrt(xxx) / 5.6)74;

(3) as asingle word xxx on a UDEC input line;

(4) as a symbolic replacement for a number on an input line (see Section 2.4.1);
and

(5) as a parameter to the SET, PRINT or HISTORY command of UDEC.

UDEC Version 7.0

FISH REFERENCE 2-11

A function may be referred to in another function before it is defined; the FISH compiler simply
creates a symbol at the time of first mention, and then links all references to the function when it is
defined by a DEFINE command.

Function calls may be nested to any level (i.e., functions may refer to other functions, which may
refer to others, and so on). However, recursive function calls are not allowed (i.e., execution of a
function must not invoke that same function). Example 2.3 shows a recursive function call, which
is not allowed, because the name of the defining function is used in such a way that the function
will try to call itself. The example will produce an error on execution.

Example 2.3 A recursive function call

new
def load_sum
load_sum = 0.0
bi = block_head
loop while bi # 0
load_sum = load_sum + b_yforce(bi)
bi = b_next(bi)
end_loop
end

The same function should be coded as shown in Example 2.4:

Example 2.4 Removing recursion from the function shown in Example 2.3

new
def load_sum
sum = 0.0
bi = block_head
loop while bi # 0
sum = sum + b_yforce(bi)
bi = b_next(bi)

end_loop
load_sum = sum
end

The difference between a variable and a function is that a function is always executed whenever
its name is mentioned; a variable simply conveys its current value. However, the execution of a
function may cause other variables (as opposed to functions) to be evaluated. This effect is useful,
for example, when several histories of FISH variables are required: only one function is necessary
in order to evaluate several quantities, as in Example 2.5.

UDEC Version 7.0

2-12 FISH in UDEC

Example 2.5 Evaluation of variables

new
def h_var_1
zi = z near(l, 2)
h var 1 = z_sxx(z1)
h_var_2 = z_sxy(zi)
h_var_3 = z_syy(zi)

end

The UDEC commands to request histories might be

hist h_var_1
hist h_var_2
hist h_var_3

The function h_var_1 would be executed by the UDEC’s history logic every few steps but, as
a side effect, the values of h_var_2 and h_var_3 would also be computed and used as history
variables.

2.2.5 Data Types

There are four data types used for FISH variables or function values:
1. Integer exact numbers in the range -2,147,483,648 to +2,147,483,647;

2. Floating-point approximate numbers with about six decimal digits of precision, with a
range of approximately 1073% to 103%; and

3. String packed sequence of any printable characters; the sequence may be any length, but
it will be truncated in the printout. Strings are denoted in FISH and UDEC by a sequence
of characters enclosed by single quotes (e.g., ‘Have a nice day’). Note that the use
of strings in UDEC is restricted to titles and file names. See Section 2.4.1.

4. Pointer (machine address — used for scanning through linked lists. They have an asso-
ciated type from the object to which the pointer refers, except for the null pointer.)

A variable in FISH can change its fype dynamically, depending on the type of the expression to
which it is set. To make this clear, consider the assignment statement

varl = var2

If varil and var2 are of different types, then two things are done: first, varl’s type is converted to
var2’s type; second, var2’s data are transferred to varl. In other languages, such as FORTRAN
or C, the type of var1l is not changed, although data conversion is done. By default, all variables
in FISH start their life as integers. However, a statement such as

UDEC Version 7.0

FISH REFERENCE 2-13

varl = 3.4

causes varl to become a floating-point variable when it is executed. The current type of all
variables may be determined by giving the UDEC command PRINT fish — the types are denoted in
the printout.

The dynamic typing mechanism in FISH was devised to make programming easier for non-
programmers. In languages such as BASIC, numbers are stored in floating-point format, which can
cause difficulties when integers are needed for, say, loop counters. In FISH, the type of the variable
adjusts naturally to the context in which it is used. For example, in the code fragment

n =n+ 2
XX = XX + 3.5

the variable n will be an integer and will be incremented by exactly 2, and the variable xx will
be a floating-point number, subject to the usual truncation error but capable of handling a much
bigger dynamic range. The rules governing type conversion in arithmetic operations are explained
in Section 2.2.6. The type of a variable is determined by the type of the object on the right-hand
side of an assignment statement; this applies both to FISH statements and to assignments done with
the UDEC SET command. Both types of assignment may be used to change the type of a variable
according to the value specified:

1. An integer assignment (digits 0-9 only) will cause the variable to become an
integer (e.g., varl = 334).

€6 9

2. If the assigned number has a decimal point or an exponent denoted by “e
or “E,” then the variable will become a floating-point number (e.g., varl =
3eb; var2= -1.2).

3. If the assignment is delimited by single quotes, the variable becomes a string,
with the “value” taken to be the list of characters inside the quotes
(e.g., varl = ‘Have a nice day’).

Type conversion is also done in assignments involving predefined variables or functions; these rules
are presented in Section 2.5.

2.2.6 Arithmetic: Expressions and Type Conversions

Arithmetic follows the conventions used in most languages. The symbols
R -+

denote exponentiation, division, multiplication, subtraction and addition, respectively, and are ap-
plied in the order of precedence given. Arbitrary numbers of parentheses may be used to render
explicit the order of evaluation; expressions within parentheses are evaluated before anything else.
Inner parentheses are evaluated first. As an example, FISH evaluates the following variable xx as
133.

UDEC Version 7.0

2-14

XX = 6/3*473+5

FISH in UDEC

The expression is equivalent to

xx = ((6/3) * (473)

) + 5

If there is any doubt about the order in which arithmetic operators are applied, then parentheses
should be used for clarification.

If either of the two arguments in an arithmetic operation is of floating-point type, then the result
will be floating-point. If both of the arguments are integers, then the result will be integer. It is
important to note that the division of one integer by another causes truncation of the result (for
example, 5/2 produces the result 2, and 5/6 produces the result 0).

2.2.7 Strings

There are two main FISH intrinsic functions that are available to manipulate strings:

in(var)

string(var)

prints out variable var if it is a string, or the message “Input?” if it
is not, and then waits for input from the keyboard. The returned value
depends on the characters typed. FISH tries to decode the input first
as an integer and then as a floating-point number. The returned value
will be of type int or float if a single number that can be decoded as
integer or floating-point, respectively, has been entered.

If the characters entered by the user cannot be interpreted as a single
number, then the returned value will be a string containing the se-
quence of characters. The user’s FISH function can determine what
has been returned by using the function type().)

converts var to type string.

One use of these functions is to control interactive input and output. Example 2.6 demonstrates
this for user-supplied input parameters for Young’s modulus and Poisson’s ratio.

Example 2.6 Control of interactive input

def in_def
xxX = in(msg+’ ('+’'default:’+string(default)+"):")
if type(xx) = 3
in_def = default
else
in_def = xx
end_if
end

def moduli_data
default = 1.0e9

UDEC Version 7.0

FISH REFERENCE 2-15

’

msg='Input Young's modulus
v_mod = in_def

default = 0.25

msg='Input Poisson'‘'s ratio
p_ratio = in_def

if p_ratio = 0.5 then

’

ii = out(’ Bulk mod is undefined at Poisson‘'s ratio = 0.57")
ii = out(’ Select a different value --')
p_ratio = in_def
end_if
s_mod = y.mod / (2.0 * (1.0 + p_ratio))
b_mod = y_mod / (3.0 * (1.0 - 2.0 * p_ratio))
end

moduli_data

block 0,0 0,10 10,10 10,0
gen edge 10

zone model elastic

zone bulk=b_mod shear=s_mod
print b_mod s_mod

print prop bulk

print prop shear

The only arithmetic operation that is valid for string variables is addition; as demonstrated in
Example 2.6, this causes two strings to be concatenated.

It is invalid for only one argument in an arithmetic operation to be a string variable. The intrinsic
function string() must be used if a number is to be included as part of a string variable (see variable
xx in Example 2.6). Also note the use of intrinsic function type(), which identifies the type of
argument (see Section 2.5.4).

2.2.8 Deleting and Redefining FISH Functions

A FISH function in UDEC with the same name as a previously defined FISH function will overwrite
the previous function; local variables defined by the previous function will still exist. FISH functions
which call the old function will not call the new function.

Example 2.7 Attempting to redefine a FISH function

def joe
ii = out(’ a function’)
end

UDEC Version 7.0

2-16 FISH in UDEC

def fred
joe

end

fred

def joe

; ... old message will appear

ii = out(’ a new function’)
end
joe
; however joe as called by fred no longer exists
fred

UDEC Version 7.0

FISH REFERENCE 2-17

2.3 FISH Statements

There are a number of reserved words in the FISH language; they must not be used for user-
defined variable or function names. The reserved words, or statements, fall into three categories,
as explained below.

2.3.1 Specification Statements

The following words are normally placed at the beginning of a FISH function. They alter the
characteristics of the function or its variables, but do not affect the flow of control within the
function. They are only interpreted during compilation.

ARRAY

varl(nl,n2 ...) <var2(ml, m2 ...)> <var3(pl,p2...)> ...
This statement permits arrays of any dimension and size to be included in FISH code.

In the above specification, varl is any valid variable name and nl, n2 ... are either
actual integers or single user-defined variables (not expressions) that have integer
values at the time the ARRAY statement is processed. There may be several arrays
specified on the same line (e.g., var2, above); the number of dimensions may be
different for each array. The ARRAY statement is a specification and is acted on
during compilation, not execution (it is ignored during execution).

1. The given name may be an existing single variable. If so, it is converted to an
array and its value is lost. If the name does not already exist, it is created.

2. The given name may not be that of a function or the name of an existing array
(i.e., arrays cannot be redefined).

3. The given dimensions (nl, n2, ...) must be positive integers, or evaluate to
positive integers (i.e., indices start at 1, not 0).

4. There is no limit to the number and size of the array dimensions, except memory
capacity and the maximum line length.

Array variables take any type (integer, float or string), according to the same rules
governing single variables. They are used exactly like single variables, except that
they are always followed by an argument (or index) list enclosed by parentheses. In
use (as opposed to in specification), array indices may be integer expressions. For
example,

varl = (abc(3,nn+3,max(5,6)) + ggg) / 3.4

is a valid statement if abe is the name of a three-dimensional array. Arrays may
appear on both sides of an assignment, and arrays may be used as indices of other
arrays.

UDEC Version 7.0

2-18

FISH in UDEC

Some restrictions apply to the use of array names in UDEC command lines:

(1) The command PRINT fish prints the legend (array) if the corresponding symbol
is an array, together with the array dimensions.

(2) PRINT name (where name is a FISH array name) simply prints out the maximum
array indices.

(3) The use of a FISH array name as the source or destination for a number in the
SET command is not allowed, and prompts an error message (e.g., SET grav =
name, where name is a FISH array name).

(4) PRINT name index prints the value stored in name (index).

WHILESTEPPING

If this statement appears anywhere within a user-defined function, then the function is
always executed automatically at the start of every UDEC step. The WHILESTEPPING
attribute can later be disabled with the use of the SET fishcall 0 remove command
(see Section 2.4.4).

The fishcall (see the SET fishcall command) statement provides more flexibility and
control than the WHILESTEPPING command, and its use is preferred.

Synonym: WHILE_STEPPING

2.3.2 Control Statements

The following statements serve to direct the flow of control during execution of a FISH function.
Their position in the function is of critical importance, unlike the specification statements described

above.
DEFINE
END

function-name

The FISH program between the DEFINE and END commands is compiled and stored in
UDEC ’s memory space. The compiled version of the function is executed whenever
its name is mentioned, as explained in Section 2.2.4. The function name (which
should be chosen according to the rules in Section 2.2.2) does not need to be assigned
a value in the program section that follows. Defining a FISH function within another
function is not allowable.

UDEC Version 7.0

FISH REFERENCE 2-19

CASEOF
CASE
ENDCASE

expr
n

The action of these control statements is similar to the FORTRAN-computed GOTO
or C’s SWITCH statement. It allows control to be passed rapidly to one of several
code segments, depending on the value of an index. The use of the keywords is
illustrated in Example 2.8.

Synonym: CASE_OF END_CASE

Example 2.8 Usage of the CASE construct

caseof

7 oo e e

7 oo e e

7 oo e e

7 e e e

endcase

.................. default code here

.................. case 11 code here

.................. case 12 code here

.................. case 13 code here

The object expr following CASEOF can be any valid algebraic expression; when
evaluated, it will be converted to an integer. The items i/, i2,i3, . .. must be integers
(not symbols) in the range 0 to 255. If the value of expr equals i1, then control jumps
to the statements following the CASE il statement; execution then continues until
the next CASE statement is encountered. Control then jumps to the code following
the ENDCASE statement; there is no “fall-through,” as in the C language. Similar
jumps are executed if the value of expr equals i2, i3, and so on. If the value of
expr does not equal the numbers associated with any of the CASE statements, then
any code immediately following the CASEOF statement is executed, with a jump
to ENDCASE when the first CASE is encountered. If the value of expr is less than
zero or greater than the greatest number associated with any of the CASEs, then an
execution error is signaled, and processing stops. The numbers n (e.g., il, i2, i3)
need not be sequential or contiguous, but no duplicate numbers may exist.

CASEOF . .. ENDCASE sections may be nested to any degree; there will be no conflict
between CASE numbers in the different levels of nesting (e.g., several instances of
CASE 5 may appear, provided that they are all associated with different nesting
levels). The use of CASE statements allows rapid decisions to be made (much
more quickly than for a series of IF ... ENDIF statements). However, the penalty is
that some memory is consumed; the amount of memory depends on the maximum
numerical value associated with the CASE statements. The memory consumed is
one plus the maximum CASE number in double-words (four-byte units).

UDEC Version 7.0

2-20

ELSE
ENDIF

EXIT

FISH in UDEC

exprl test expr2 THEN

These statements allow conditional execution of FISH code segments; ELSE is op-
tional and the word THEN may be omitted if desired. The item fest consists of one
symbol or symbol pair:

= # > < >= <=

The meanings are standard, except for #, which means “not equal.” The items exprl
and expr2 are any valid algebraic expressions (which can involve functions, UDEC
variables, etc.). If the test is true, then the statements immediately following IF are
executed until ELSE or ENDIF is encountered. If the test is false, the statements
between ELSE and ENDIF are executed if the ELSE statement exists; otherwise, con-
trol jumps to the first line after ENDIF. All the given fest symbols may be applied
when expressions exprl and expr2 evaluate to integers or floating-point values (or
a mixture). If both expressions evaluate to strings, then only two tests are valid: =
and #. All other operations are invalid for strings. Strings must match exactly, for
equality. Similarly, both expressions may evaluate to pointers, but only = and # tests
are valid.

IF ... ELSE ... ENDIF clauses can be nested to any depth.
Synonym: END_IF

This statement causes an unconditional jump to the end of the current function.

EXIT SECTION

LOOP
ENDLOOP
LOOP
ENDLOOP

This statement causes an unconditional jump to the end of a SECTION; FISH program
sections are explained below.

var (exprl, expr2)
or

WHILE exprl test expr2

The FISH program lines between LOOP and ENDLOOP are executed repeatedly until
certain conditions are met. In the first form, which uses an integer counter, var is
given the value of exprl initially, and is incremented by 1 at the end of each loop
execution until it obtains the value of expr2. Note that exprl and expr2 (which may
be arbitrary algebraic expressions) are evaluated at the start of the loop; redefinition
of their component variables within the loop has no effect on the number of loop
executions. var is a single integer variable; it may be used in expressions within the
loop (even in functions called from within the loop), and may even be redefined.

UDEC Version 7.0

FISH REFERENCE 2-21

SECTION

ENDSECTION

In the second form of the LOOP structure, the loop body is executed while the
test condition is true; otherwise, control passes to the next line after the ENDLOOP
statement. The form of fest is identical to that described for the IF statement. The
expressions may involve floating-point variables as well as integers; the use of strings
and pointers is also permitted under the same conditions that apply to the IF statement.

The two forms of the LOOP structure may be contrasted. In the first, the test is done
at the end of the loop (so there will be at least one pass through the loop); in the
second, the test is done at the start of the loop (so the loop will be bypassed if the
test is false initially). Loops may be nested to any depth.

Synonym: END_LOOP

The FISH language does not have a “GO TO” statement. The SECTION construct
allows control to jump forward in a controlled manner. The statements SECTION
... ENDSECTION may enclose any number of lines of FISH code; they do not affect
the operation in any way. However, an EXIT SECTION statement within the scope of
the section so defined will cause control to jump directly to the end of the section.
Any number of these jumps may be embedded within the section. The ENDSECTION
statement acts as a label, similar to the target of a GO TO statement in C or FOR-
TRAN. The logic is cleaner, however, because control may not pass to anywhere
outside the defined section, and flow is always “downward.” Sections may not be
nested; there may be many sections in a function, but they must not overlap or be
contained within each other.

Synonym: END_SECTION

2.3.3 UDEC Command Execution

COMMAND

ENDCOMMAND

UDEC commands may be inserted between this pair of FISH statements; the com-
mands will be interpreted when the FISH function is executed. There are a number of
restrictions concerning the embedding of UDEC commands within a FISH function.
The NEW and RESTORE commands are not permitted to be invoked from within a
FISH function. The lines found inside a COMMAND — ENDCOMMAND pair are simply
stored by FISH as a list of symbols; they are not checked at all, and the function
must be executed before any errors can be detected. There is an 80 character limit
to any command in this section.

UDEC Version 7.0

2-22 FISH in UDEC

Comment lines (starting with ;) are taken as UDEC comments instead of FISH
comments. It may be useful to embed an explanatory message within a function, to
be printed out when the function is invoked. If the echo mode is off (SET echo =
off), then any UDEC commands coming from the function are not displayed to the
screen or recorded to the log file.

A FISH function may not be defined within a COMMAND — ENDCOMMAND section
(or within another FISH function). A CALL command may not be used within a
COMMAND — ENDCOMMAND section.

Synonym: END_COMMAND

UDEC Version 7.0

FISH REFERENCE 2-23

2.4 Linkages to UDEC

2.4.1 Modified UDEC Commands

The following list contains all of the UDEC commands that refer directly to FISH variables or
entities. There are many other ways that UDEC and FISH may interact (described in Section 2.4.2).

HISTORY

PRINT

PRINT

SET

TITLE

FISH symbol

causes a history of the FISH variable or function to be taken during stepping. If
FISH symbol is a function, then it will be evaluated every time histories are stored
(controlled by HISTORY ncyc command); it is not necessary to register the function
with a fishcall. If FISH symbol is a FISH variable, then its current value will be taken,
so be careful when using variables (rather than functions) for histories. The history
may be plotted in the usual way.

fish

prints out a list of FISH symbols, and either their current values or an indication of
their type. Variables with names that start with a dollar sign ($) are not printed with
the PRINT fish command, but they may be printed with the command PRINT $fish.

fishcall

prints the current associations between fishcall ID numbers and FISH functions (see
Section 2.4.4).

fishcall n <remove> name

The FISH function name will be called in UDEC from a location determined by
the value of the fishcall ID number n. The currently assigned ID numbers are listed
in Table 2.2. When placed before the FISH function name, the optional keyword
remove causes the FISH function to be removed from the list.

<’string’>

changes the stored title (used on plots, for example) to the value of the FISH string
variable str. Note that the variable name must not be in single quotes.

UDEC Version 7.0

2-24 FISH in UDEC

2.4.2 Execution of FISH Functions

In general, UDEC and FISH operate as separate entities: FISH statements cannot be given as UDEC
commands, and UDEC commands do not work directly as statements in a FISH program. However,
the two systems may interact in many ways; some of the more common ways are listed below.

1. Direct use of function — A FISH function is executed at the user’s request by
giving its name on an input line. Some typical uses are to generate geometry,
set up a particular profile of material properties, or initialize stresses in some
fashion.

2. Use as a history variable — When used as the parameter to a HISTORY com-
mand, a FISH function is executed at regular times throughout a run (whenever
histories are stored).

3. Automatic execution during stepping — If a FISH function makes use of the
generalized fishcall capability (or contains the WHILESTEPPING statement),
then it is executed automatically at every step in UDEC’s calculation cycle,
or whenever a particular event occurs. (See Section 2.4.4 for a discussion on
fishcall.)

4. Use of function to control a run — Since a FISH function may issue UDEC
commands (via the COMMAND statement), the function can be used to “drive”
UDEC in a way that is similar to that of a controlling data file. However,
the use of a FISH function to control operation is much more powerful, since
parameters to commands may be changed by the function.

The primary way of executing a FISH function from UDEC is to give its name as UDEC input. In
this way, FISH function names act just like regular commands in UDEC. However, no parameters
may follow the function name so given. If parameters are to be passed to the function, then they
must be set beforehand with the SET command.

There is another important link between FISH and UDEC: a FISH symbol (variable or function
name) may be substituted anywhere a number is expected in a UDEC command. This is a very pow-
erful feature because data files can be set up with symbols instead of actual numbers. Example 2.9
shows how a data file that is independent of problem geometry can be constructed. Parameters that
are used in FISH functions to generate geometry variables can be specified.

UDEC Version 7.0

FISH REFERENCE 2-25

Example 2.9 FISH function with generic zone handling capability

new
def setup
length = x_right - x_left
height = y_top - y_bottom

x_centre = x_left + length / 2.0

y_centre = y_bottom + height / 2.0

radius = (diam_frac * min(length, height)) / 2.0
edge_len = edge_frac * radius

SMOOTH = 24

MEDIUM = 16

ROUGH = 8
end

; function input ---

set x left = -15.0 x_right = 25.0 vy _bottom = -50.0 y_top = 0.0
set diam_frac = 0.7 edge_frac = 0.5
setup

; create model

block x_left, y bottom x_left, v _top x right, y_top x_right, y bottom
crack x_centre, y bottom x_centre, y_top

crack x_left, y_centre x_right, y_centre

tunnel x_centre, y_centre, radius, MEDIUM

gen edge edge_len

delete annulus x_centre, y_centre 0 radius

plot block zone hold

Example 2.9 illustrates several of the points made above: the function setup is invoked by giving
its name on a line; the parameters controlling the function are given beforehand with the SET
command; there are no significant numerical values in the UDEC input — they are all replaced by
symbols.

String variables may be used in a similar way, but their use is much more restricted than the use of
numerical variables. A FISH string variable may be substituted (1) wherever a file name is required,
or (2) as a parameter to the TITLE command. In these cases, single quotes are not placed around
the string, so that UDEC can distinguish between a literal name and a variable standing for a name.
Example 2.10 illustrates the syntax.

UDEC Version 7.0

2-26 FISH in UDEC

Example 2.10 Using string variables

new

def xxx
namel = ‘abc.log’
name2 = ‘This is run number ’ + string(n_run)
name3 = ’‘abc’ + string(n_run) + ’.sav’

end

set n_run = 3

XXX

set log = namel
title name2
save name3

The intrinsic function string() is described in Sections 2.2.7 and 2.5.4; it converts a number to a
string.

Another important way to use a FISH function is to control a UDEC run or a series of UDEC
operations. UDEC commands are placed within a COMMAND ... ENDCOMMAND section in the
function. The whole section may be within a loop, and parameters may be passed to UDEC
commands. This approach is illustrated in Example 2.11, in which 10 complete runs are done, each
with a different value of joint friction angle.

Example 2.11 Controlling a series of UDEC runs

new

def series
new_fric = 40.0
step_lim = 3000
i_gp = gp_near(0,20)
loop nn (1, 10)

ii = out(’'friction angle = ' + string(new_fric))
command
prop mat = 1 jfric = new_fric

reset vel
reset disp jdisp rot time
solve step = step_lim

endcommand

xtable(l,nn) = new_fric

ytable(1l,nn) = log(abs(gp_ydis(i_gp)))

new_fric = new fric - inc_fric
endloop

end

UDEC Version 7.0

FISH REFERENCE 2-27

block 0 0 0 20 20 20 20 0

crack 0 3 20 13

gen edge 2.5

bound yvel 0.0 range 0 20 -.1 .1

bound xvel 0.0 range -.1 .1 0 2

prop mat 1 dens 2700 bulk 1e9 shear .7e9
prop jmat 1 jkn 1.33el0 jks 1.33el0 jfric 45
set grav 0 -10

set inc_fric = 2

hist solve_rat type 1

solve

series

plot table 1 both hold

For each run (i.e., execution of the loop), all model variables are reset and the friction angle is
redefined. The results are summarized in a table in which the log of incremental displacement is
plotted against friction angle (Figure 2.1). The stability limit is seen to be about 26°. The table
functions xtable and ytable are described in Section 2.5.5.1.

JOBTITLE :
UDEC (Version 6.00) 0ocrooM
LEGEND
28-Oct-2013 14:03:06 -0.20 1T
cycle 15689

time 1.495E+00 sec

table plot

-1.12E+01<tab 1>-1.08E+00XXX%-
Vs.

2.20E+01<X value> 4.00E+01

-0.40 1

-0.60 T

-0.80

-1.00 1

-1.20

220 240 260 280 300 320 340 360 3.80 4.00 420

Itasca Consulting Group, Inc. (e+001)

Minneapolis, Minnesota USA

Figure 2.1 Plot of log of incremental displacement versus friction angle

UDEC Version 7.0

2-28 FISH in UDEC

2.4.3 Error Handling

UDEC has a built-in error-handling facility that is invoked when some part of the program detects
an error. There is a scheme for returning control to the user in an orderly fashion, no matter where
the error may have been detected.

2.4.4 Fishcall

FISH functions may be called from several places in the UDEC program. The form of the command
is

SET fishcall n <remove> name

Setting a fishcall causes the FISH function name to be called from UDEC, from a location determined
by the value of ID number n. Currently, the ID numbers shown in Table 2.2 are assigned.

The ID number 0 also corresponds to functions that contain the WHILE_STEPPING statement (i.e.,
these functions are automatically mapped to ID 0). Any number of functions may be associated
with the same ID number (although the order in which they are called is undefined; if the order is
important, then one master function should be called, which then calls a series of sub-functions).
Also, any number of ID numbers may be associated with one FISH function. In this case, the same
function will be invoked from several places in the host code.

Parameters may be passed to FISH functions called by using the intrinsic function FC_ARG(r),
where n is an argument number. The meanings of the parameters (if any) are listed in Table 2.2.
For example, for fishcall 2, the value passed as FC_ARG(0) is the index of the contact about to be
deleted.

The printout keyword fishcall (the abbreviation is fishc) lists the current associations between ID
numbers and FISH functions (i.e., PRINT fishcall).

The SET fishcall command normally adds the given name to the list already associated with the
given ID number. However, the keyword remove, placed before the FISH name, causes the FISH
function to be removed from the list. For example,

set fishcall 2 remove Xxx

will remove the association between function xxx and ID number 2. Note that a FISH function
may be associated twice (or more) with the same ID number. In this case, it will be called twice (or
more). The remove keyword will remove only one instance of the function name. Functions that
are associated with a fishcall cannot be redefined without using the remove keyword first.

UDEC Version 7.0

FISH REFERENCE 2-29

Table 2.2 Assigned fishcall IDs

ID Location Argument 0
0 beginning of calculation cycle

1 when contact created contact index
2 when contact deleted contact index
3 when Jcons5 contacts crack contact index

These numbers are given symbolic macro names in the “FISHCALL.FIS” file, the contents of which
are listed in Example 2.12. The symbolic names should be used instead of actual numbers, so that
assignments may be changed in the future without the need to change existing FISH functions.

Example 2.12 Listing of “FISHCALL.FIS”

def fcall_toks

; Tokens for FishCall numbers
FC_CYC_MOT =0
FC_CONT_CREATE
FC_CONT_DEL
FC_JCON5_CRACK
FC_RESID_CRACK
FC_Local_rein
FC_thermal

end

fcall_toks

Il
U W w N

The data file in Example 2.13 illustrates the use of a fishcall. Two blocks are moved toward each
other at a relatively high velocity. When the blocks touch, the applied velocity is removed; this
prevents a contact overlap error from occurring. The FISH function stop_loading is invoked
with a fishcall that is triggered when a contact is created, and sets the block velocities to zero.

Example 2.13 Illustration of fishcall use

new

call fishcall.fis

round 0.001

bl (-0.05,-0.1) (-0.05,0.1) (0.25,0.1) (0.25,-0.1)
crack -1 0 1 O

crack 0 0.1 0 O

crack 0.2 0.1 0.2 0

crack 0.1 0.1 0.1 0

crack 0.105 0.1 0.105 O

UDEC Version 7.0

2-30 FISH in UDEC

del -0.050 0 0.1
del 0.2 0.25 0 0.1
del 0.1 0.105 0 0.1
gen 01 -1 0 quad 0.4 0.11
gen 0 1 01 qguad 0.07 0.11
prop mat=1 d=2.60e-3 k=45000 g=30000
joint model area
set jcondf area
joint jkn=40000 jks=40000 jfric=30
bound xvel=0 range -0.06,-0.04 -1,1
bound xvel=0 range 0.24,0.26 -1,1
bound yvel=0 range -1,1 -0.11,-0.09
bound stress (0,0,-10) range -1,1 0.09,0.11
hist solve_rat type 1
solve
; apply shear load by imposing x-velocity on top blocks
bou xvel=0.1 range -.01,.101 -.01,.11
bou xvel =-0.1 range .104,.21 -.01,.11
def stop_loading
ii=out(’ ')
ii=out (’ Contact created! Address = ’'+string(fc_arg(0)))
command
bou xvel=0.0 range atblock .025 .05
bou xvel=0.0 range atblock .150 .05
endcommand
end
set fishcall FC_CONT_CREATE stop_loading
hist xvel 0.1,0.1
hist xdis 0.2,0.1
step 10000

UDEC Version 7.0

FISH REFERENCE 2-31

2.5 Predefined Functions, Variables and Arrays

There are certain functions and variables that are built into FISH, and the names of these entities must
be avoided when naming user-defined variables or functions. This section describes all predefined
entities. The entities are organized in several categories: scalars, model variables, general intrinsic
functions, table functions and memory-access functions. In some cases, an entity is listed under
more than one category, as appropriate.

2.5.1 UDEC-Specific Scalar Variables

The variables listed in this category have a single value, and are specifically related to internal
UDEC data structures or the solution process. An asterisk (*) denotes that the variable may be
assigned a value within a user-written function; otherwise, the variable’s value may only be tested,
not set.

1. Indices to Data Arrays (integer type)
block_head

bou_head

index to list of blocks
index to list of boundary corners
cable_elem_head index to list of cable elements

cable_node_head index to list of cable nodes

contact_head
domain_head
ibou_head
outer_domain
r_head
str_elem_head
str_int_head
str_node_head
sup_head
table_head(;)
tgps_head

index to list of contacts

index to list of domains

index to list of interior boundary corners
index of outer domain

index to list of reinforcement elements
index to list of structural elements

index to list of structural node interfaces
index to list of structural nodes

index to list of support elements

index to start of table i

start of linked list of gridpoint thermal sources

UDEC Version 7.0

2-32 FISH in UDEC

2. General Variables (floating point type unless declared otherwise)

cridel creep timestep

crtime creep time

cycle synonym for step — integer

fluid_bulk * fluid bulk modulus

fluid_density * fluid density

frach * fraction of critical block timestep

fracz * fraction of critical zone timestep

ftime fluid flow time

grav_x * synonym for xgrav

grav.y * synonym for ygrav

sol_fmag sum of gridpoint forces

sol_fob sum of out-of-balance gridpoint forces

sol_ratio value of current out-of-balance force ratio limit

sol_rloc maximum ratio of out-of-balance total forces for a single
gridpoint

sol_rmax current solve ratio

step step (cycle) number — integer

tdel timestep

thdt thermal timestep

thtime thermal time

time mechanical time

unbal maximum out-of-balance force in model

xgrav * x-component of gravity

ygrav * y-component of gravity

UDEC Version 7.0

FISH REFERENCE

2.5.2 General Scalar Variables

2-33

The variables listed in this category have a single value, and are not specifically related to UDEC;
they are general-purpose scalars. An asterisk (*) denotes that a variable may be assigned a value
within a user-written function. Otherwise, the variable’s value may only be tested, not set. The
variables listed below are of floating-point type unless declared otherwise.

clock
cycle
degrad

grand

null
pi
step
unbal

urand

number of hundredths-of-a-second from midnight (integer)
current cycle (step) number (integer)

/180 (used to convert degrees to radians — for example,
a = cos(30*degrad) gives the cosine of 30°)

random number drawn from normal distribution, with a
mean of 0.0 and standard deviation of 1.0. The mean and
standard deviation may be modified by multiplying the re-
turned number by a factor and adding an offset.

link-list terminator; it is of type pointer
b4

current step (cycle) number (integer)
maximum unbalanced force

random number drawn from uniform distribution between
0.0and 1.0

UDEC Version 7.0

2-34 FISH in UDEC

2.5.3 UDEC-Specific Model Variables

The following reserved names refer to UDEC-specific variables that require the integer indices to
be specified in parentheses immediately following the name. For example, the x-coordinate of a
block with block index bi is obtained from b_x(bi), where bi is an integer representing a block index
number.

The index value for any UDEC block, contact, corner, domain, gridpoint or zone may be found
by executing the appropriate function, given a position specified by x, y global coordinates. The
functions are listed below.

bi = b_near(x, y) index of block closest to (x, y)

bci = bou_near(x, y) index of boundary corner closest to (x, y)
ci = c_near(x, y) index of contact closest to (x, y)

cri = cor_near(x, y) index of corner closest to (x, y)

di = d_near(x, y) index of domain closest to (x, y). Note: This function will not
return the address of the outer domain (use outer_domain).

gi = gp_near(x, y) index of gridpoint closest to (x, y)

Zi = z_near(x, y) index of zone closest to (x, y)

Alternatively, the list of objects may be scanned by using headers (e.g., block_head and contact_head)
listed in Section 2.5.1, and the next-item pointers (e.g., gp-_next() and z_next()) listed below. The
determination of index values can be time-consuming, as the entire model must be scanned. It is
recommended that, if possible, the functions above not be used directly within FISH functions that
are executed during stepping.

The following variable names must be spelled out in full in FISH statements; they cannot be
truncated, as in UDEC commands. An asterisk (*) denotes that the variable can be modified by a
FISH function; otherwise, its value may only be tested.

Block Variables
b_area(bi) block area
b_bex(bi) index pointing to FDEF data structure
b_cons(bi) * constitutive model number
b_corner(bi) first corner of block
b_dsf(b:) density scaling factor

UDEC Version 7.0

FISH REFERENCE

b_extra(bi)
b_fix(si)
b_gp(bi)
b_group(si)
b_mass(bi)
b_mat(s:)
b_moi(bi)
b_mom(bi)
b_next(b:)
b_rvel(bi)
b_type(bi)
b_x(bi)
b_xforce(b:)
b_xload(b:)
b_xvel(bi)
b_y(bi)
b_yforce(bi)
b_yload(b:)
b_yvel(bi)
b_zone(bi)

* extra variable available to user

* rigid block fix condition (= 1 fixed, = 0 free)
index of gridpoint list

* block group name

block mass

* material property number

moment of inertia

* moment

index of next block in main list from block
* angular velocity of rigid block

block type: 1 =rigid, 3 = deformable
x-coordinate of centroid of block

* x-force

* applied x-force

* x-velocity of rigid block

y-coordinate of centroid of block

* y-force

* applied y-force

* y-velocity of rigid block

index of zone list

2-35

UDEC Version 7.0

2-36

Block Material Property Variables

m_bulk(mn)
m_cohesion(mn)
m_density(mn)
m_dilation(mn)

m_friction(mn)

m_shear(mn)

m_tension(mn)

Boundary Corner Variables

bou_gp(bci)

bou_xreaction(bci)

bou_yreaction(bci)

Configuration Variables
cf_axi(ci)
cf_cell(ci)
cf_creep(ci)
cf_fluid(ci)
cf_p_stress(ci)

cf_thermal(ci)

Contact Variables

c_b1(ci)

FISH in UDEC

* property bulk of property number mn

* property cohesion of property number mn

* property density of property number mn

* property tan (dilation) of property number mn

* property coefficient of friction (not angle) of property num-
ber mn

* property shear of property number mn

* property tension of property number mn

index of gridpoint associated with the boundary corner
if > 0, gridpoint is on outer boundary
if < 0, gridpoint is on an interior boundary

x-direction reaction force at boundary corner for fixed ve-
locity boundary

y-direction reaction force at boundary corner for fixed ve-
locity boundary

set =1 if CONFIG axi was used

set = 1 if CONFIG cell was used

set = 1 if CONFIG creep was used
set = 1 if CONFIG fluid was used

set = 1 if CONFIG p_stress was used
set = 1 if CONFIG thermal was used

block 1 at contact

UDEC Version 7.0

FISH REFERENCE

¢_b2(ci)
c_cons(ci)
c_di(ci)
c_d2(ci)
c_extra(ci)
c_group(ci)

c_jex(ci)

c_length(ci)
c_link1(ci)
c_link2(ci)
c_mat(ci)
c_ndis(ci)
c_next(ci)
c_nforce(ci)
c_nx(ci)
c_ny(ci)
c_sdis(ci)

c_sforce(ci)

block 2 at contact

* constitutive model number
index of domain 1 at contact
index of domain 2 at contact

* extra variable available to user
* contact group name

extension pointer for local properties

(used for Barton-Bandis and joint models).

extension array is model #.

1 = point

2 = area
3=cy

4 = residual

7 = Barton-Bandis

contact length

next contact/corner on block 1
next contact/corner on block 2
* material property number

* normal displacement

2-37

Oth offset of

index of next contact in main list from contact ci

* normal force
x-component of unit normal
y-component of unit normal
* shear displacement

* shear force

UDEC Version 7.0

2-38

c_thsource(ci)

c_type(ci)

¢ _X(ci)

c_y(ci)
j_model(ci)

j_prop(ci, name)

FISH in UDEC

Define a thermal source at the location of contact ci. The
function returns the link index (#) to the gridpoint thermal
source data structure. If a source already exists for the spec-
ified contact, the function merely returns the link index (#).
The thermal source strength, decay exponent and start time
need to be defined using the appropriate gridpoint thermal
source FISH functions:

tgps_decay(ri) exponent for decaying sources
tgps_strength(¢i) strength of the source
tgps_timeth(si) thermal time at which source was defined

contact type:

1 corner/corner
2 block 1 corner/block 2 edge
3 block 1 edge/block 2 corner

x-coordinate of contact
y-coordinate of contact

* model of contact for extended and user-defined joint con-
stitutive DLL models. For built-in models, use ¢_cons(ci).

* value of named property. This is valid only for extended
and user-defined joint constitutive models. Use ¢_mat(ci) for
built-in models.

Contact Material Property Variables

m_jcohesion(mn)

m_jdilation(mn)
m_jfriction(mn)
m_jkn(mn)
m_jks(mn)
m_jrescoh(mn)

m_jrfriction(mn)

* property jeohesion of property number mn

* property jdilation of property number mn

* property coefficient of jfriction of property number mn
* property jkn of property number mn

* property jks of property number mn

* property jrescoh of property number mn

* property coefficient of jrfriction of property number mn

UDEC Version 7.0

FISH REFERENCE

m_jrtension(mn)

m_jtension(mn)

Corner Variables
cor_block(cri)
cor_bou(cri)
cor_extra(cri)
cor_gp(cri)
cor_link(cri)
cor_rlink(cri)
cor _X(cri)
cor _xdis(cri)
cor_xvel(cri)
cor_y(cri)
cor_ydis(cri)

cor_yvel(cri)

Domain Variables

d_contact(di, ic)

d_extra(di)
d_fix(di)
d_next(d:)
d_pp(di)
d_vol(di)
d_x(di)
d_y(di)

* property jrtension of property number mn

* property jtension of property number mn

index of host block

index of boundary corner array

* extra variable available to user

index of gridpoint associated with corner

next corner/contact in clockwise direction
next corner in counterclockwise direction
x-coordinate

* x-displacement

x-velocity

y-coordinate

* y-displacement

y-velocity

2-39

Ific is O, the function returns the first contact in counterclock-
wise list around the domain. If ic is a contact, the function

returns the next contact in the domain.

* extra variable available to user

* fixed pressure condition (= 1 fixed, = 0 free)

index of next domain in main list from di
* domain fluid pressure

domain volume

x-coordinate of domain center

y-coordinate of domain center

UDEC Version 7.0

2-40

Gridpoint Variables
gp-bou(gi)
gp_corner(gi)
gp_dsfgi)
gp_extra(gi)
gp_mass(gi)

gp_next(gi)
gp_thmass(gi)

gp-x(gi)
gp_xdis(gi)
gp_xforce(gi)
gp-_xvel(gi)
ap-Y(gi)
gp-ydis(gi)
gp_yforce(gi)
gp-yvel(gi)

FISH in UDEC

index of boundary corner associated with gridpoint
index of corner associated with gridpoint

density scaling factor

* extra variable available to user

gridpoint mass

index of next gridpoint in main list from gi

returns thermal mass for a gridpoint. Note: UDEC stores the
inverse of the thermal mass. The function returns the actual
thermal mass, which will be different from what would be
obtained using an FMEM() function.

x-coordinate

* x-displacement
* x-force

* x-velocity
y-coordinate

* y-displacement
* y-force

* y-velocity

Gridpoint Thermal Source Functions

tgps_cor(ti)

tgps_decay(r)
tgps_gp(ti)
tgps_next(z)
tgps_strength(z)

Corner at which the thermal mass is stored. This is the
coupled corner, and may not be the corner directly connected
to the gridpoint or contact for which the thermal source is
specified.

exponent for decaying sources
gridpoint to which thermal source is to be applied
next source in list

strength of the source

UDEC Version 7.0

FISH REFERENCE

tgps_timeth(x)

tgps_type(si)

2-41

thermal time at which source was defined

thermal source type (currently, only 1)

Local Reinforcement Material Properties

r_aexp(mn)
r_astiff(mn)
r_length(mn)
r_rfac(mn)
r_sexp(mn)
r_sstif(mn)
r_str(mn)
r_uaxial(mn)

r_ushear(mn)

Zone Variables
z_biot_c(zi)
z_block(zi)
z_bulk(zi)

z_density(zi)

z_extra(zi)

z fsi(zi, arr)

z_fsr(zi, arr)

z_gp(zi, i)

* axial stiffness exponent of property number mn

* axial stiffness of property number mn

* active length of property number mn

* reversal factor of property number mn

* shear stiffness exponent of property number mn

* shear stiffness of property number mn

* ultimate axial failure strain of property number mn
* ultimate axial force limit of property number mn

* ultimate shear force of property number mn

* Biot’s constant for zone
index of block associated with zone

zone bulk modulus (returns 0.0 if properties are assigned by
the ZONE command)

* zone density. Note: gridpoint masses are recalculated
when the next CYCLE command is given.

* extra variable available to user

fills array (4) arr with the strain increment components. (1 =
€xx,2 = exy, 3 = exy, 4 = €yy) Strains are calculated
from the current gridpoint displacements.

fills array (4) arr with the strain rate components. (1 = éxux,
2 = éxy, 3 = éxy, 4 = €yy) Strain rates are calculated
from the current gridpoint velocities.

index of zone gridpoint (i = 1, 2, 3 for three surrounding
gridpoints)

UDEC Version 7.0

2-42

z_group(zi)
z_mass(zi)

z_mat(zi)

z_model(zi)
z_next(zi)

2.pp(zi)
z_prop(zi, name)

z_rot(zi)

z_shear(zi)

z_state(zi)

2_sxX(zi)
z_sxy(zi)

z_syy(zi)
z_s22(zi)

FISH in UDEC

* zone group name
zone mass

material property number for zone (returns —1 if the prop-
erties are assigned by the ZONE command)

* model of zone
index of next zone in main list
* zone pore pressure

* value of named property for zone. This is valid for any
models assigned using the ZONE command. (For density
and Biot’s constant, use specific functions.)

* zone rotation

zone shear modulus (returns 0.0 if the properties are assigned
by the ZONE command)

* plasticity state indicator:

0 elastic

1 currently at yield in shear and/or volume
2 currently at yield in tension

4 currently not at yield but has been in the

past, in shear

16 ubiquitous joints at yield in shear
32 ubiquitous joints at yield in tension
64 ubiquitous joints currently not at yield but

have been in the past, in shear

128 ubiquitous joints previously at yield in ten-
sion

* xx-stress

* xy-stress

* yy-stress

* zz-stress

UDEC Version 7.0

FISH REFERENCE

Z_X(zi)

z.y(zi)
z_zex(zi)

2.5.4 Intrinsic Functions

2-43

x-coordinate of zone centroid
y-coordinate of zone centroid

index of zone extension array

extension offsets:

0 —model # (if < 0 = fill material; if > 1000 = cpp model)
1 - plasticity state

... — property values for zone models

All functions return floating-point values except for and, or, not, int and type, which return integers,
and get_mem, which returns a pointer. The functions max, min, abs and sgn return integers if their
argument(s) are all integer; otherwise, they return as floating-point. All functions must be placed on
the right-hand side of an assignment statement, even if the function’s return value is of no interest.

For example,

ii = out(’ Hi there!’)

is a valid way to use the out function. In this case, i1 is not used.

abs(a)
and(a,b)
atan(a)
atan2(a,b)

cos(a)

exp(a)
fc_arg(n)

float(a)

get_mem(nw)

absolute value of a
bit-wise logical and of a and b
arc-tangent of a (result is in radians)

arc-tangent of a/b (result is in radians). NOTE: b may be
Zero.

cosine of a (a is in radians)

This function causes an error condition. FISH-function pro-
cessing (and command processing) stops immediately. The
message reported is string. This function can be used for
assignment only. (string = error is not allowed.)

exponential of a

passes arguments to FISH functions where n is an argument
number.

converts a to a floating-point number. If it cannot be con-
verted (e.g., if a is a string), then 0.0 is returned.

gets nw FISH-variable objects from UDEC’s memory
space, and returns the address of the start of the contiguous
array of objects (see Section 2.5.5.2).

UDEC Version 7.0

2-44

grand

in(s)

int(a)

In(a)

log(a)
lose_mem(nw,ia)

max(a,b)

mem(memptr)

min(a,b)
not(a)
null
or(a,b)

out(s)

round(a)

sgn(a)

FISH in UDEC

random number drawn from normal distribution:
mean = 0.0; standard deviation = 1.0

prints out the message contained in string variable s, and then
waits for input from the keyboard. The returned value will be
of type int or float if a single number that can be decoded as
integer or floating-point, respectively, has been entered. The
number should be the only thing on the line. However, if it
is followed by a space, comma or parenthesis, then any other
characters on the line are ignored. If the characters typed in
by the user cannot be interpreted as a single number, then
the returned value will be a string containing the sequence
of characters.

converts a to integer. If it cannot be converted (e.g., ifa is a
string), then zero is returned.

natural logarithm of a
base-ten logarithm of a

returns nw FISH-variable objects to UDEC for reuse. The
parameter ia is the address of the start of the array of objects;
there is no checking done to ensure that ia is a valid address.
The return value is undefined (see Section 2.5.5.2).

returns maximum of a, b.

returns contents of memory address memptr
(see Section 2.5.5.2).

returns minimum of a, b.

bit-wise logical not of a

end of linked-list (pointer variable)
bit-wise logical inclusive or of a, b

prints out the message contained in s to the screen (and to
the log file, if it is open). The variable s must be of type
string. The returned value of the function is zero if no error
is detected, and 1 if there is an error in the argument (e.g., if
§ 1s not a string).

converts a to an integer using arithmetic rounding conven-
tion.

sign of a (returns —1 if a < 0; else, 1)

UDEC Version 7.0

FISH REFERENCE 2-45

sin(a) sine of @ (a is in radians)
sqrt(a) square root of a
string(a) converts a to a string. If a is already of type string, then

the function simply returns a as its value. If a is int or float,
then a character string that corresponds to the number as it
would be printed out will be returned. However, no blanks
are included in the string.

tan(a) tangent of @ (a is in radians)

type(e) the variable type of e is returned as an integer with value 1,
2, 3,4 or 5, according to the type of the argument: int, float,
string, pointer or array, respectively.

urand random number drawn from uniform distribution between
0.0and 1.0

2.5.5 Special Functions — Tables and Memory Access

The functions described in the previous section are “conventional” in the sense that they simply
return a value, given some parameter(s), or they are executed for some effect. In other words,
they always appear on the right-hand side of any assignment statement. In contrast, the functions
described in this section may appear on either side of an assignment (= sign). They act partly as
functions and partly as arrays.

2.5.5.1 Tuables

The table, xtable, ytable and table_size functions allow FISH functions to create and manipulate
UDEC tables, which are indexed arrays of number pairs used in several of UDEC ’s commands and
operations. However, tables are different from arrays in other programming languages. Tables are
dynamic data structures; items may be inserted and appended, and interpolation between values may
be done automatically. Consequently, the manipulation of tables by FISH is time-consuming. Use
them with caution! The action of each function depends on whether it is the source or destination
for a given data item. Hence, each function is described twice.

A table is a list of pairs of floating-point numbers (denoted for convenience as x and y), although
the numbers may stand for any variables, not necessarily coordinates. Each table entry (or (x,y)
pair) also has a sequence number in the table. However, the sequence number of a given (x,y) pair
may change if a new item is inserted in the table. Sequence numbers are integers that start from 1
and go up to the number of items in the table. Each table has a unique identification number, which
may be any integer except zero.

There are two distinct ways tables may be used in a FISH function. The table function behaves
in the same way as the regular UDEC TABLE command (i.e., insertion and interpolation are done

UDEC Version 7.0

2-46

FISH in UDEC

automatically). The other functions, xtable and ytable, allow items to be added or updated by
reference to the sequence numbers; no interpolation or insertion is done.

y = table(n,x)

table(r,x) =y

x = xtable(n,s)

xtable(n,s) = x

y = ytable(n,s)

ytable(n,s) =y

i = table_size(n)

The existing table n is consulted and a y-value found by
interpolation, corresponding to the given value of x. The
value of x should lie between two consecutive stored x-
values, for the results to be meaningful. An error is signaled
if table n does not exist.

An (x,y) pair is inserted into the first appropriate place in
table n (i.e., the new item is inserted between two existing
items with x-values that bracket the given x-value). The new
item is placed at the beginning of the table or appended to the
end if the given x is lower than the lowest x or greater than
the greatest x, respectively. The number of items in the table
is increased by one, following execution of this statement.
If table n does not exist, it is created, and the given item is
taken as the first entry. The given statement is equivalent to
the UDEC command TABLE n insert x y. If the given x is
identical to the stored x of an (x,y) pair, then the y-value is
updated rather than inserted.

The x-value of the pair of numbers that has sequence number
s in table n is returned. An error is signaled if table n does
not exist or if sequence number s does not exist.

The given value of x is substituted for the stored value of
x in the (x,y) pair having sequence number s, in table n.
If sequence number s does not exist, then sufficient entries
are appended to table n to encompass the given sequence
number; the given x is then installed. If the given table does
not exist, it is created. An error is signaled if n is given as
zero, or if § is given as zero or negative.

The action of this statement is identical to the corresponding
xtable statement except that the y-value of the (x,y) pair is
retrieved instead of the x-value.

The action of this statement is identical to the corresponding
xtable statement except that the y-value of the (x,y) pair is
installed instead of the x-value.

The number of entries in table n is returned in value i.

UDEC Version 7.0

FISH REFERENCE 2-47

Since the xtable and ytable functions can create tables of arbitrary length, they should be used with
caution. It is suggested that the table function be used in constitutive models where interpolated
values are needed from tables. The xtable and ytable functions are more useful when generating
tables.

The following notes may be helpful when using the FISH table functions.

1. Inlarge tables, for efficiency, sequence numbers should be scanned in the direc-
tion of ascending numbers. UDEC keeps track of the last-accessed sequence
number for each table; this is used to start the search for the next requested
number. If the requested number is smaller than the previous one, the whole
table may need to be searched.

2. The xtable and ytable functions, rather than table, should be used to update
values in an existing table. Although table will update an (x,y) pair if the given
x is identical to the stored x, there may be slight numerical errors, which can
result in insertion rather than updating.

3. Ina FISH function that replaces old table values with new values, it is necessary
to create the table first, since the action of retrieving old values will produce
an error. A complete table may be created (and its entries all set to zero) by a
single statement, as illustrated in

xtable(4,100) = 0.0

If table 4 does not exist, then it is created. 100 entries are also created, each
containing (0.0,0.0). Subsequent statements, such as

xtable(4,32) = xtable(4,32) + 1.0
vtable(4,32) vtable(4,32) + 4.5

will update table values but will not alter the length of the table. If the latter
statements are executed before table 4 exists, then an error will be detected.

4. Stored values (both x and y) in tables are always floating-point numbers. Given
integers are converted to floating-point type before storing. Be careful about
precision!

Refer to Example 2.11 for an example in the use of table functions.

UDEC Version 7.0

2-48 FISH in UDEC

2.5.5.2 Special Functions to Access Memory Directly

The functions get_mem(), lose_mem() and mem() manipulate user-defined structures made up of
blocks of FISH-type variables (i.e., variables that may be of type integer, floating-point, string or
pointer). The “addresses” referred to here are machine addresses and cannot be converted to or
from UDEC indices, which are used by other intrinsic functions. The functions described here are
useful for rapid data manipulation, separate from UDEC data.

get_mem(n) This function gets n FISH-variable objects from the host’s
memory space and returns the address of the start of the
contiguous array of objects.

lose_mem(n,ad) This function returns n FISH-variable objects to the host.
The parameter ad is the address of the start of the array of
objects; there is no checking done to verify that ad is a valid
address. The returned value is undefined.

mem(ad) This function may be used either as a source or destination
(i.e., on the right- or left-hand side of an expression):

var =mem(ad) The value of the FISH-variable at address
ad is transmitted to the regular FISH vari-
able var (together with its type).

mem(ad)=var The value and type of the regular FISH
variable var is placed in the FISH-variable
at address ad.

It is the user’s responsibility to make sure that the addresses
given contain valid FISH variables. During execution, an
error message is given if ad is not of type pointer.

Access to elements of an array of FISH variables is via the addition operator; no other arithmetic
operation is allowed on a pointer. When an integer n is added to a pointer, the pointer then points
to a variable that is higher by n positions in the array. For example, suppose we create a 10-object
array:

head = get_mem(10)

The first object (item 0) is accessed by

var = mem(head)

The fourth object (item 3), for example, is accessed by

var = mem(head+3)

UDEC Version 7.0

FISH REFERENCE 2-49

and so on. The minus operator is not allowed; we can add a negative integer if we want to go
backward in an array. The last item in a linked list is denoted by the intrinsic pointer variable null;
the integer zero should not be used.

All direct manipulation of UDEC’s memory should be done with great caution; only experienced
programmers should use the memory functions. As an example of the use of direct memory ma-
nipulation, the following program does an insertion sort on twenty random floating-point numbers
stored in a linked list. A structure of two FISH variable objects is created for each generated random
number, the number being stored in one of these variables. The other variable is given the address
of the next such structure, with the final structure containing a null value, thus forming a linked list.

Each new random number is compared against values in the list, and inserted at the appropriate
point. This insertion consists of reassigning the address values contained in the previous item to
the address of the new item.

Example 2.14 Insertion sort of 20 random numbers

def inserter
head = null ;1list head
loop n (1,20)

number = urand ;new random float
ad = head
prev = head
section
loop while ad # null ;Scan existing numbers
if number > mem(ad+1) ;Exit if we are past
exit section ;required location
end_if
prev = ad ; Remember previous object
ad = mem(ad)
end_loop
end_section
new = get_mem(2) ;Create a double-object
if prev = head ;and link up
mem (new) = head

head = new
else
mem (new) = mem(prev)
mem (prev) = new
end_if
mem (new+1) = number
end_loop
;--—- now scan list, and print out ---
count = 1
ad = head
loop while ad # null

UDEC Version 7.0

2-50
if count < 10 ;a trick to line up
nn = ' ’‘+string(count) ;numbers in columns
else
nn = string(count)
end_if
11 = out(nn+’ ’‘+string(mem(ad+1l)))
count = count + 1
ad = mem(ad)
end_loop
end
inserter

FISH in UDEC

UDEC Version 7.0

FISH REFERENCE 2-51

2.5.6 Access to UDEC’s Data Structures

Warning! This section is intended for experienced programmers who are familiar with the use of
linked lists. The techniques described here are powerful because they provide access to most of the
internal data in UDEC, but they are dangerous if used without full understanding.

Most of UDEC ’s data are stored in a single, one-dimensional array. A FISH program has access to
this array via imem and fmem, which act like array names for integer and floating-point numbers,
respectively. Given index iad (which must be an integer), floating-point (f) or integer () values can
be found from

f = fmem(iad)
i = imem(iad)
Values can also be inserted in the array:
fmem(iad) = f
imem(iad) =i

These functions are potentially very dangerous, as any data can be changed in UDEC ’s main array.
Only experienced programmers should use them. No checking is done to verify that iad is an
integer, so the user must be very careful.

Data structures in UDEC consist of one or more linked lists, with offsets to individual data items.
Index iad then comprises two components:

iad = iaddress + i1offset

where iaddress is the index of the specific object (e.g., block, zone, cable, node, etc.) and ioffset
is the offset number that identifies the specific data item (e.g., block velocity or cable node force).
The data items and offsets for all UDEC objects are listed in Section 4.

Data in tables can also be manipulated with these functions. The address of table n can be found
by using

table_head(n) index to list of (x, y) pairs in table n.

UDEC Version 7.0

2-52 FISH in UDEC

This function returns iad — the values of ioffset are 1 for the x-entry, and 2 for the y-entry. Exam-
ple 2.15 shows the code from the FISH library file “INT.FIS,” which integrates the values in an
existing table. Please refer to for complete instructions on how to use this function. It is listed here
simply to illustrate the manipulation of the table values.

Example 2.15 Using table_head

def integrate

command

table int_out delete
endcommand
tpnt = table_head(int_in)

xold fmem (tpnt+1)

yvold = fmem(tpnt+2)

val = 0.0
table(int_out,xold) = wval

loop while tpnt # 0
xnew = fmem (tpnt+1)
ynew = fmem(tpnt+2)
val = val + 0.5*(yold + ynew) * (xnew-xold)
table (int_out,xnew) = val
xo0ld = xnew
yold = ynew
tpnt = imem(tpnt)
end_loop

end

UDEC Version 7.0

FISH REFERENCE 2-53

2.5.7 Determining Failure States of Zones

UDEC stores a state variable with 16 bits that can be used to represent a maximum of 15 distinct
states. Some of the states that are used by constitutive models in UDEC are given in Table 2.3:

Table 2.3 Failure states

State State Value
Failure in shear now 1
Failure in tension now 2
Failure in shear in the past 4
Failure in tension in the past 8
Failure in joint shear now 16
Failure in joint tension now 32
Failure in joint shear in the past 64
Failure in joint tension in the past 128
Failure in volume now 256
Failure in volume in the past 512

UDEC Version 7.0

2-54 FISH in UDEC

Example 2.16 Plasticity states

DEF _States

shearnow =1 ;1
tensionnow = 2 ;2
shearpast = 4 ;3
tensionpast = 8 ; 4
jointshearnow = 16 ;5
jointtensionnow = 32 ; 6
jointshearpast = 64 ;7
jointtensionpast = 128 ; 8
volumenow = 256 ;9
volumepast = 512 ; 10
; Quick reference

; Model States used

; Bilinear, Strain-Hardening/
; Softening Ubiquitous-Joint
; Cam-Clay

H Chsoil

; Cpower

; Cvisc

H Cwipp

; Double-Yield

; Drucker-Prager

; Hoek-Brown

; Mhoek-Brown

; Mohr-Coulomb

; Strain-Hardening/Softening
; Ubiquitous-Joint

; Pwipp

PR R R R RPR R R R R R R R
[

S0 R R W s R D W o
©
I
'_\
o

_States

The numbers listed in Table 2.3 are given symbolic FISH names in file “STATES.FIS,” the contents
of which are listed in Example 2.16. The symbolic names should be used instead of actual numbers,
so that assignments can be changed in the future without the need to change existing FISH functions.

The data file in Example 2.17 illustrates the process of determining failure state of zones in a model
using FISH function z_state.

UDEC Version 7.0

FISH REFERENCE

Example 2.17 Printing zone plasticity states

2-55

new

set log myfile.log
set log on

round .01

block 0,0 0,1 1,1 1,0
gen edge 1

change cons 3

prop mat 1 bulk 2e6 shea 2e3 coh 2e4 ten 2e3 dens 2000

prop jmat = 1 jkn 1le3 jks 1le3
gravity 0,-10

boun -.1 1.1 0.9 1.1 stress 0,9,-3e2
boun -.1 1.1 -.1 .1 yvel 0

step 100

7

call states.fis ; failure states defined as FISH variables

DEF _querystate
iab = block_head
loop while iab # 0
iaz = b_zone(iab)
loop while iaz # 0

i_mess = ’‘zone ’'+string(iaz)

curr_state = z_state(iaz)

if and(curr_state, shearnow) # 0 then
i_mess = 1_mess+’ shear’

else
if and(curr_state, shearpast) # 0 then

i_mess = 1_mess+’ shear_past’

endif

endif

if and(curr_state, tensionnow) # 0 then
i_mess = 1_mess+’ tension’

else
if and(curr_state, tensionpast) # 0 then

i_mess = i_mess+’ tension_past’

endif

endif

if and(curr_state, jointshearnow) # 0 then
i_mess = i_mess+’ joint_shear’

else

UDEC Version 7.0

2-56 FISH in UDEC

if and(curr_state, jointshearpast) # 0 then
i_mess = i_mess+’ joint_shear past’
endif
endif
if and(curr_state, jointtensionnow) # 0 then
i_mess = 1_mess+’ joint_tension’
else
if and(curr_state, jointtensionpast) # 0 then
i_mess = i_mess+’ joint_tension_past’
endif
endif
if and(curr_state, volumenow) # 0 then
i_mess = 1_mess+’ volume’
else
if and(curr_state, volumepast) # 0 then

i_mess = i_mess+’ volume_past’
endif
endif
ii = out(i_mess)
iaz = z_next(iaz)
endloop
iab = b_next (iab)
endloop
END
_querystate

set log off
return

UDEC Version 7.0

FISH REFERENCE

2.6 FISH 1/0 Routines

2-57

The set of FISH functions described in this section allow data to be written to, and read from, a
file. There are two modes: an “ASCII” mode that allows a FISH program to exchange data with
other programs, and a “FISH” mode that allows data to be passed between FISH functions. In FISH
mode, the data are written in binary, without loss of precision; numbers written out in ASCII form
may lose precision when read back into a FISH program. In FISH mode, the value of the FISH
variable, not the name of the variable, is written to the file. Only one file may be open at any one

time.

close The currently open file is closed; O is returned for a successful operation.

open(filename, wr, mode)

This function opens a file filename, for writing or reading. The variable
filename can be a quoted string or a FISH string variable.

Parameter wr must be an integer with one of two values:

0
1

file opened for reading; file must exist
file opened for writing; existing file will be overwritten

Parameter mode must be an integer with one of two values:

0

read/write of FISH variables; only the data corresponding to the
FISH variable (integer, float or string), not the name of the
variable, are transferred.

read/write of ASCII data; on a read operation, the data are
expected to be organized in lines, with CR/LF between lines. A
maximum of 80 characters per line is allowed.

The returned value denotes the following conditions.

0 N N L WD~ O

file opened successfully

filename is not a string

filename is a string, but is empty

wr or mode (not integers)

bad mode (not 0 or 1)

bad wr (not O or 1)

cannot open file for reading (e.g., file does not exist)
file already open

not a FISH mode file (for read access in FISH mode)

UDEC Version 7.0

2-58

FISH in UDEC

read(ar, n)

reads n records into the array ar. Each record is either a line of ASCII
data or a single FISH variable. The array ar must be an array of at least n
elements. The returned value is:

0 requested number of lines were input without error
—1 error on read (except end-of-file)

n positive value indicates that end-of-file was encountered after
reading n lines

In FISH mode, the number and type of records read must exactly match the
number and type of records written. It is up to the user to control this. If
an arbitrary number of variables are to be written, the first record could be
made to contain this number, so that the correct number could subsequently
be read.

write(ar, n)

writes n records from the first n elements of the array ar. Each record is
either a line of ASCII data or a single FISH variable. For ASCII mode,
each element written must be of type string. The array ar must be an array
of at least n elements. The returned value is:

0 requested number of lines were output without error

—1 error on write

n positive value (in ASCII mode) indicates that the nth element
was not a string (hence only n — 1 lines were written). An error
message 1s also displayed on the screen.

The following intrinsic functions do not perform file operations, but can be used to extract items
from ASCII data that are derived from a file.

parse(s, i)

This function scans the string s and decodes the ith item, which it returns.
Integers, floats and strings are recognized. Delimiters are the same as for
general commands (i.e., spaces, commas, parentheses, tabs and equal signs).
If the ith item is missing, zero is returned. An error message is displayed
and zero is returned if the variable s is not a string.

UDEC Version 7.0

FISH REFERENCE

pre_parse(s, i)

2-59

This function scans the string s and returns an integer value according to
the type of the ith item, as follows.

0

1
2
3

missing item

integer

float

string missing (unable to interpret as int or float)

Example 2.18 illustrates the use of the FISH I/O functions:

Example 2.18 Using the FISH 1/0 functions

def setup
a_size =
IO_READ
IO_WRITE
IO_FISH
IO_ASCII
filename

20

I
-~k O r o

end
setup

def io

array aal(a_size)

; ASCITI I/O TEST

junk.dat’

bb(a_size)

status = open(filename, IO_WRITE, IO_ASCII)
aa(l) = 'Line 1 Fred’

aa(2) = 'Line 2 Joe’

aa(3) = 'Line 3 Roger’

status = write(aa,3)

status = close

status = open(filename, IO_READ, IO_ASCII)
status = read(bb, a_size)

if status # 3 then

oo = out(’
endif
status = close

Bad number of lines’)

; now check results...

loop n (1,3)

if parse(bb(n

oo = out(’

exit

) I
Bad 2nd item in loop

2) # n then

+ string(n))

UDEC Version 7.0

2-60

en
7

io

endif
endloop

if pre_parse(bb(3), 4) # 3 then
oo = out(’ Not a string’)
exit

endif

; FISH I/O TEST -------—--—-——-—~

status = open(filename, IO_WRITE, IO_FISH)
funny_int = 1234567

funny_ float = 1.2345e6

aa(l) = '---> All tests passed OK’
aa(2) = funny_int
aa(3) = funny float

status = write(aa,3)

status = close

status = open(filename, IO_READ, IO_FISH)
status = read(bb, 3)

status = close

; now check results...

if type(bb(1l)) # 3 then
oo = out(’ Bad FISH string read/write’)

exit

endif

if bb(2) # funny_int then
oo = out(’ Bad FISH integer read/write’)
exit

endif

if bb(3) # funny_ float then
oo = out(’ Bad FISH float read/write’)
exit

endif

oo = out(bb(l)) ; (should be a good message)

command

sys del junk.dat
endcommand
d

FISH in UDEC

UDEC Version 7.0

FISH REFERENCE 2-61

2.7 Socket I/0 Routines

FISH contains the option to allow data to be exchanged between two or more Itasca codes running
as separate processes, using socket connections (as used for TCP/IP transmission over the Internet).
At present, these versions (or later) of Itasca codes are required for socket I/O: UDEC Version 3.0,
FLAC Version 4.0, PFC2P Version 2.1, PFC3P Version 2.1 and FLAC3P Version 2.1. It is possible
to pass data between two or more instances of the same code (e.g., two instances of UDEC), but
the main use is anticipated to be coupling of dissimilar codes such as UDEC and PFC2P.

The data contained in FISH arrays may be passed in either direction between two codes. The data
are transmitted in binary with no loss of precision. Up to six data channels may be open at any
one time; these may exist between two codes, or may connect several codes simultaneously. The
following FISH intrinsics are provided. The word process denotes the instance of the code that is
currently running. All functions return a value of 10 if the ID number is invalid.

sopen(mode, ID)

The integer mode takes the value O or 1. A value of 1 causes
the data channel of number ID to be initiated, with the pro-
cess acting as a server. Another process can link to the
server, with the same ID, by invoking sopen, with mode =0,
which denotes the process as a client. The ID number must
be in the range O to 5, inclusive, giving a total of six possi-
ble channels of communication. The server sopen function
must be issued before the client sopen function, for a given
ID. While waiting for a connection, the server process is
unresponsive. The sopen function returns O when a good
connection has been made, and nonzero if an error has been
detected.

sclose(ID)
Channel ID is closed.
swrite(arr, num, ID)

num FISH variables are sent on channel ID from array arr.
The data in arr may consist of a mixture of integers, reals
and strings. Zero is returned for a good data transmission;
nonzero is returned if an error is detected. In addition, er-
ror messages may be issued for various problems, such as
incorrect array size, etc.

UDEC Version 7.0

2-62 FISH in UDEC

sread(arr, num, ID)

num FISH variables are received from channel ID and
placed in array arr, which is overwritten, and which must be
at least num elements in size. The returned value is zero if
data are received without error; it is nonzero if an error has
occurred. Note that the function sread does not return until
the requested number of items have been received. There-
fore, a process will appear to “lock up” if insufficient data
have been sent by the sending process.

In order to achieve socket communication between two processes, codes must be started separately
from separate directories. To illustrate the procedure, we can send messages between two instances
of UDEC, as follows.

Example 2.19 Server data file

new
def serve
array arr(3)

arr(l) = 1234

arr(2) = 57.89

arr(3) = 'hello from the server’
_ret = sopen(l,1)

if _ret = 0 then

oo = swrite(arr,3,1)
oo = sread(arr,1,1)
oo = sclose(l)
oo = out(arr(l))
endif
end
serve

The client data file is as follows.

Example 2.20 Client data file

new
def client
array arr(3)
oo = sopen(0,1)
oo = gsread(arr,3,1)
oo = out(’ Received values ...)
oo = out(’ "+string(arr(l)))
oo = out ('’ "+string(arr(2)))

UDEC Version 7.0

FISH REFERENCE 2-63

oo = out(’ "+string(arr(3)))
arr(l) = ’‘greetings from the client’
oo = swrite(arr,1,1)
oo = sclose(l)

end

; Received values should be...
; 1234

; 5.7890E+01

; hello from the server
client

Data have been passed both ways between the two code instances.

UDEC Version 7.0

2-64 FISH in UDEC

UDEC Version 7.0

