
FISH BEGINNER’S GUIDE 4 - 1

4 FISH BEGINNER’S GUIDE

4.1 Introduction and Overview

FISH is a programming language embedded within UDEC that enables the user to define new
variables and functions. These functions may be used to extend UDEC ’s usefulness or add user-
defined features. For example, new variables may be plotted or printed, special model generators
may be implemented, servo control may be applied to a numerical test, unusual distributions of
properties may be specified, and parameter studies may be automated.

FISH was developed in response to requests from users who wanted to do things with Itasca
software that were either difficult or impossible to do with existing program structures. Rather than
incorporate many new and specialized features into the standard code, an embedded language was
provided so that users could write their own functions. Some useful FISH functions have already
been written; a library of these is provided with the UDEC program (see the FISH library in the
Help in UDEC.

It is possible for someone without experience in programming to write simple FISH functions or
to modify some of the simpler existing functions. Section 4.2 contains an introductory tutorial for
non-programmers. However, FISH programs can also become very complicated (which is true of
code in any programming language) – for more details, refer to the FISH section in the Help in
UDEC.

As with all programming tasks, FISH functions should be constructed in an incremental fashion,
checking operations at each level before moving on to more complicated code. FISH does less
error-checking than most compilers, so all functions should be tested on simple data sets before
they are used for real applications. However, the built in text editor in the GUI wil flag incorrect
FISH functions.

FISH programs are simply embedded in a normal UDEC data file (lines following the word fish
define are processed as a FISH function); the function terminates when the word end is encountered.
Functions may invoke other functions, which may invoke others, and so on. The order in which
functions are defined does not matter, as long as they are all defined before they are used (e.g.,
invoked by a UDEC command). Since the compiled form of a FISH function is stored in UDEC ’s
memory space, the model save command saves the function and the current values of associated
variables.

All of the FISH language rules and intrinsic functions are discussed in the FISH section in the Help
in UDEC.

This includes rules for syntax, data types, arithmetic, variables and functions. All FISH language
names are described in the FISH section in the Help in UDEC.

UDEC Version 7.0

4 - 2 User’s Guide

4.2 Beginner’s Guide and Tutorial

This section is intended for people who have run UDEC (at least for simple problems) but have
not used the FISH language; no programming experience is assumed. To get the maximum benefit
from the examples given here, you should try them out with UDEC running interactively. The short
programs may be typed in directly. After running an example, give the UDEC command model
new, to “wipe the slate clean,” ready for the next example. Alternatively, the more lengthy programs
may be created on file and called when required.

Type the lines in Example 4.1 after UDEC ’s command prompt, pressing <Enter> at the end of
each line.

Example 4.1 Defining a FISH function

model new
fish def abc

abc = 22 * 3 + 5
end

Note that the command prompt changes to Def> after the first line has been typed in; then it
changes back to the usual prompt when the end command is entered. This change in prompt lets
you know whether you are sending lines to UDEC or to FISH. Normally, all lines following the
fish define statement are taken as part of the definition of a FISH function (until the end statement
is entered). However, if you type in a line that contains an error (e.g., you type the = sign instead
of the + sign), then you will get the UDEC prompt back again. In this case, you should give the
model new command and try again from the beginning. Since it is very easy to make mistakes,
FISH programs are normally typed into a file using the editor. These are then called into UDEC just
like a regular UDEC data file. We will describe this process later; for now, we’ll continue to work
interactively. Assuming that you typed in the preceding lines without error, and that you now see
the UDEC prompt udec:, you can “execute” the function abc,* defined earlier in Example 4.1
by typing the line

print abc

The message

abc = 71

should appear on the screen. By defining the symbol abc (using the fish define ... end construction,
as in Example 4.1), we can now refer to it in many ways using UDEC commands. Note that any
FISH function or variable must be preceeded by the “@” character when used in a command outside
of a FISH function. This also applies to usage inside of a command ... end command.

* We will use courier boldface to identify user-defined FISH functions and declared variables
in the text.

UDEC Version 7.0

FISH BEGINNER’S GUIDE 4 - 3

For example, the fish list @abc command causes the value of the FISH symbol abc to be displayed;
the value is computed by the series of arithmetic operations in the line

abc = 22 * 3 + 5

This is an “assignment statement.” If an equal sign is present, the expression on the right-hand side
of the equal sign is evaluated and given to the variable on the left-hand side. Note that arithmetic
operations follow the usual conventions: addition, subtraction, multiplication and division are done
with the signs +, -, * and /, respectively. The sign ˆ denotes “raised to the power of.”

We now type in a slightly different program (using the command model new to erase the old one):

Example 4.2 Using a variable

model new
fish def abc

hh = 22
abc = hh * 3 + 5

end

Here we introduce a “variable,” hh, which is given the value of 22 and then used in the next line. If
we give the command fish list @abc, then exactly the same output as in the previous case appears.
However, we now have two FISH symbols; they both have values, but one (abc) is known as a
“function” and the other (hh) as a “variable.” The distinction is as follows.

When a FISH symbol name is mentioned (e.g., in a fish list state-
ment), the associated function is executed if the symbol corresponds
to a function. However, if the symbol is not a function name, then
the current value of the symbol is used.

The following experiment may help to clarify the distinction between variables and functions.
(Before doing the experiment, note that UDEC ’s fish set command can be used to set the value
of any user-defined FISH symbol, independent of the FISH program in which the symbol was
introduced.) Now type in the following lines without giving the model new command, since we
want to keep our previously entered program in memory.

Example 4.3 SETting variables

fish set @abc=0
fish set @hh=0
fish list @hh
fish list @abc
fish list @hh

The fish set command sets the values of both abc and hh to zero. Since hh is a variable, the
first fish list command simply displays the current value of hh, which is zero. The second fish list

UDEC Version 7.0

4 - 4 User’s Guide

command causes abc to be executed (since abc is the name of a function); the values of both
hh and abc are thereby recalculated. Accordingly, the third fish list statement shows that hh has
indeed been reset to its original value. As a test of your understanding, you should type in the
slightly modified sequence shown in Example 4.4 and figure out why the displayed answers are
different.

Example 4.4 Test your understanding of function and variable names

model new
fish def abc

abc = hh * 3 + 5
end
fish set @hh=22
fish list @abc
fish set @abc=0 @hh=0
fish list @hh
fish list @abc
fish list @hh

At this stage, it may be useful to list the most important UDEC commands that directly refer
to simple FISH variables or functions. (In Table 4.1, var stands for the name of the variable or
function.)

Table 4.1 Commands that directly
refer to FISH names

fish list var
fish set var = value
fish history var

We have already seen examples of the first two (refer to Examples 4.3 and 4.4); the third case is
useful when histories of things that are not provided in the standard UDEC list of history variables
are required. Example 4.5 shows how this can be done.

Example 4.5 Capturing the history of a FISH variable

model new
block create polygon 0,0 0,10 10,10 10,0
block zone gen edge 10
block property mat=1 dens 1000 bulk 1e9 shear 0.7e9
block gridpoint apply vel-y 0.0 range pos-y -0.01, 0.01
block mech grav 0 -10

UDEC Version 7.0

FISH BEGINNER’S GUIDE 4 - 5

fish def stress_y
zoneIdx = bl.zone(block.head)
stress_y = bl.zo.str.yy(zoneIdx)

end

fish history @stress_y
block cycle 200

In this example, a history of the vertical stress in one zone is recorded. The symbols block.zone(),
block.head and block.zone.stress.yy() are predefined names that permit access to UDEC ’s data
structures. We obtained the index of the first zone in the one block in our model. With that index
we can access a number of parameters associated with that zone. In this case, we have accessed the
vertical stress and monitored its change in a history.

In addition to the predefined variable names mentioned above, there are many other predefined
objects available to a FISH program. These fall into several classes. One such class consists of
scalar variables, which are single numbers. For example:

time.clock clock time in hundredths of a second

math.pi π

step current step number

unbalanced-force maximum unbalanced force

math.random.uniform random number drawn from uniform distribution between
0.0 and 1.0.

This is just a small selection; the full list is given in the FISH index in the Help in UDEC.

Another useful class of built-in objects is the set of intrinsic functions, which enable things like
sines and cosines to be calculated from within a FISH program. A complete list is provided in the
FISH index in the Help in UDEC. A few are given:

math.abs(a) absolute value of a

math.cos(a) cosine of a (a is in radians)

math.log(a) base-ten logarithm of a

math.max(a,b) returns maximum of a, b

math.sqrt(a) square root of a

UDEC Version 7.0

4 - 6 User’s Guide

An example in the use of intrinsic functions will be presented later, but now we must discuss one
more way a UDEC data file can make use of user-defined FISH names:

Wherever a number is expected in a UDEC input line, you may
substitute the name of a FISH variable or function.

This simple statement is the key to a very powerful feature of FISH that allows such things as
ranges, applied stresses, properties, etc. to be computed in a FISH function and used by UDEC
input in symbolic form. Hence, parameter changes can be made very easily, without the need to
change many numbers in an input file.

As an example, let us assume that we know the Young’s modulus and Poisson’s ratio of a material.
Since UDEC needs the bulk and shear moduli, these may be derived with a FISH function, using
Eqs. (4.1) and (4.2):

G = E

2(1 + ν)
(4.1)

K = E

3(1 − 2ν)
(4.2)

Coding Eqs. (4.1) and (4.2) into a FISH function (called derive) can then be done as shown in
Example 4.6:

Example 4.6 FISH functions to calculate bulk and shear moduli

model new
fish def derive

s_mod = y_mod / (2.0 * (1.0 + p_ratio))
b_mod = y_mod / (3.0 * (1.0 - 2.0 * p_ratio))

end
fish set @y_mod = 5e8 @p_ratio = 0.25
@derive
fish list @b_mod
fish list @s_mod

Note that here we execute the function derive by giving its name by itself on a line; we are not
interested in its value, only what it does. If you run this example, you will see that values are
computed for the bulk and shear moduli, b mod and s mod, respectively. These can then be used,
in symbolic form, in UDEC input as shown in Example 4.7:

UDEC Version 7.0

FISH BEGINNER’S GUIDE 4 - 7

Example 4.7 Using symbolic variables in UDEC input

block create polygon 0,0 0,10 10,10 10,0
block zone gen edge 10
block zone cmodel assign elastic bulk=@b_mod shear=@s_mod
list zone property bulk
list zone property shear

The validity of this operation may be checked by printing out bulk and shear in the usual way. In
these examples, our property input is given via the fish set command (i.e., to variables y mod and
p ratio, which stand for Young’s modulus and Poisson’s ratio, respectively).

Note that there is great flexibility in choosing names for FISH variables and functions. For instance,
the underscore character () may be included in a name. Names must begin with a non-number and
must not contain any of the arithmetic operators (+, -, /, * or ˆ).

In the preceding examples, we checked the computed values of FISH variables by giving their
names explicitly as arguments to a fish list command. Alternatively, we can list all current variables
and functions. A printout of all current values, sorted alphabetically by name, is produced by giving
the command

fish list

We now examine ways decisions can be made, and repeated operations done, in FISH programs.
Two FISH statements allow specified sections of a program to be repeated many times:

loop var (expr1, expr2)

endloop

The words loop and endloop are FISH statements, the symbol var stands for the loop variable, and
expr1 and expr2 stand for expressions (or single variables). Example 4.8 shows the use of a loop
(or repeated sequence) to produce the sum and product of the first ten integers.

Example 4.8 Controlled loop in FISH

model new
fish def xxx

sum = 0
prod = 1
loop n (1,10)

sum = sum + n
prod = prod * n

end_loop
end
@xxx
fish list @sum

UDEC Version 7.0

4 - 8 User’s Guide

fish list @prod
ret

In this case, the loop variable n is given successive values from 1 to 10, and the statements inside
the loop (between the loop and endloop statements) are executed for each value. As mentioned,
variable names or an arithmetic expression could be substituted for the numbers 1 or 10.

A practical use of the loop construct is to install a nonlinear initial distribution of elastic moduli in
a UDEC grid. Suppose that the Young’s modulus at a site is given by Eq. (4.3),

E = E◦ + c
√

z (4.3)

where z is the depth below surface, and c and E◦ are constants. We write a FISH function to install
appropriate values of bulk and shear modulus in the grid, as in Example 4.9:

Example 4.9 Applying a nonlinear initial distribution of moduli

model new
;
block tolerance corner-round-length 0.1
block create polygon 0 -30 0 0 30 0 30 -30
block cut joint-set angle 36 0 trace 50 0 gap 0 0 spacing 8 0
block cut joint-set angle -58 0 trace 50 0 gap 0 0 spacing 12 0
block zone gen edge 1
block zone cmodel assign mohr-c
;
fish def install

; smoothness is the elevation tolerance on changing moduli
bi = block.head
loop while bi # 0

zi = bl.zone(bi)
loop while zi # 0

z_depth = float(int(-bl.zone.pos.y(zi)/smoothness))
y_mod = y_zero + cc * math.sqrt(z_depth)
_shear = y_mod / (2.0*(1.0+p_ratio))
_bulk = y_mod / (3.0*(1.0-2.0*p_ratio))
bl.zone.prop(zi,’bulk’) = _bulk
bl.zone.prop(zi,’shear’) = _shear
zi = bl.zone.next(zi)

end_loop
bi = bl.next(bi)

endloop
end
;
fish set @p_ratio=0.25 @y_zero=1e7 @cc=1e8 @smoothness=6.0

UDEC Version 7.0

FISH BEGINNER’S GUIDE 4 - 9

block property mat 1 dens 2000 bulk 1e8 shear 1e7
@install
ret

Again, you can verify correct operation of the function by printing or plotting shear and bulk moduli.
A plot of the model is shown in Figure 4.1:

Figure 4.1 Model constructed in Example 4.9

In the function install, we have two loops: the outer loop scans through the blocks in the
model, while the inner loop scans through the list of zones within each block. The parameter
smoothness controls the tolerance on the change of the moduli, allowing the creation of strata of
common moduli. We obtain the depth of the zone with the function block.zone.pos.y(zi); the value
is smoothed to provide a more distinct banding. The elastic moduli are then computed according
to our rule and assigned to the zones via the block.zone.prop(zi,“bulk”) function call.

Having seen several examples of FISH programs, let’s briefly examine the question of program
syntax and style. There is no limit to the length of a FISH statement. However, for readability one
may want to split a statement into two lines. This may be done useing an elipsis for a continuation
or may be done using intermediate values. Example 4.10 shows how this can be done:

UDEC Version 7.0

4 - 10 User’s Guide

Example 4.10 Splitting lines

model new
fish def long_sum ;example of a sum of many things

temp1 = v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10
long_sum = temp1 + v11 + v12 + v13 + v14 + v15

end

In this case, the sum of 15 variables is split into two parts. Also note also the use of the semicolon in
line 2 of Example 4.10 to indicate a comment. Any characters that follow a semicolon are ignored by
the FISH compiler, but they are echoed to the log file. It is good programming practice to annotate
programs with informative comments. Some of the programs have been shown with indentation (i.e.,
space inserted at the beginning of some lines to denote a related group of statements). Any number
of space characters may be inserted (optionally) between variable names and arithmetic operations
to make the program more readable. Again, it is good programming practice to include indentation
to indicate things like loops, conditional clauses and so on. Spaces in FISH are significant in the
sense that space characters may not be inserted into a variable or function name.

One other topic that should be addressed now is that of variable type. You may have noticed, when
printing out variables from the various program examples, that numbers are either printed without
decimal points, or in “E-format” (i.e., as a number with an exponent denoted by “E”). At any instant
in time, a FISH variable or function name is classified as one of many types, the most common
three types are: integer, floating-point or string. These types may change dynamically, depending
on context, but the casual user should not normally have to worry about the type of a variable, since
it is set automatically. Consider Example 4.11:

Example 4.11 Variable types

model new
fish def haveone

aa = 2
bb = 3.4
cc = ’Have a nice day’
dd = aa * bb
ee = cc + ’, old chap’

end
@haveone
fish list

UDEC Version 7.0

FISH BEGINNER’S GUIDE 4 - 11

The resulting screen display is

Name Value
------- --------------------
aa 2 (integer)
bb 3.400000000000000e+00 (real)
cc ’Have a nice day’ (string)
dd 6.800000000000000e+00 (real)
ee ’Have a nice day, old chap’ (string)

The variables aa, bb and cc are converted to integer, float and string, respectively, corresponding
to the numbers (or strings) that were assigned to them. Integers are exact numbers (without decimal
points), with a limit of about 10 decimal places (after which they will be converted to a real);
floating-point numbers have 15 digit precision, with a much greater range than integers; string
variables are arbitrary sequences of characters. There are various rules for conversion between
the three types. For example, dd becomes a floating-point number because it is set to the product
of a floating-point number and an integer; the variable ee becomes a string because it is the sum
(concatenation) of two strings.

There is another language element in FISH that is commonly used: the if statement. Three statements
allow decisions to be made within a FISH program:

if expr1 test expr2 then

else

endif

These statements allow conditional execution of FISH program segments; else and then are optional.
The item test consists of one of the following symbols or symbol-pairs:

= # > < >= <=

The meanings are standard except for #, which means “not equal.” The items expr1 and expr2
are any valid expressions or single variables. If the test is true, then the statements immediately
following if are executed until else or endif is encountered. If the test is false, the statements between
else and endif are executed if the else statement exists; otherwise, the program jumps to the first
line after endif. The action of these statements is illustrated in Example 4.12:

Example 4.12 Action of the IF ELSE ENDIF construct

model new
fish def abc

if xx > 0 then
abc = 33

else
abc = 11

end_if
end

UDEC Version 7.0

4 - 12 User’s Guide

fish set @xx = 1
fish list @abc
fish set @xx = -1
fish list @abc

The displayed value ofabc in Example 4.12 depends on the set value ofxx. You should experiment
with different test symbols (e.g., replace > with <).

Until now, our FISH programs have been invoked from UDEC, either by using the fish list command
or by giving the name of the function on a separate line of UDEC input. It is also possible to do the
reverse (i.e., to give UDEC commands from within a FISH function). Most valid UDEC commands
can be embedded between two FISH statements:

command
endcommand

There are two main reasons for sending out UDEC commands from a FISH program. First, it is
possible to use a FISH function to perform operations that are not possible using the predefined
variables that we already discussed. Second, we can control a complete UDEC run with FISH.
remember that FISH functions and variables must be preceeded by a “@” inside of command
endcommand.

As an illustration of the first use of the command statement, we can write a FISH program to place
a number of cable elements around a specific segment of a tunnel.

Starting and ending angles (counterclockwise from the positive x-axis) are specified. The variable
radius1 is the radius of the tunnel, andradius2 gives the outer ends of the cables. Example 4.13
shows the code:

Example 4.13 Automated placing of cable elements

model new

fish def setup
; Create vars for later use

xCentre = 0.0 ; x-coord of tunnel centre
yCentre = 0.0 ; y-coord of tunnel centre
theta1 = 10.0 ; starting angle for cables
theta2 = 160.0 ; ending angle for cables

; (don’t wrap back on theta1)
radius1 = 8.0 ; radius of tunnel
radius2 = 16.0 ; ending radius for remote end of cables
nCables = 15 ; number of cables

end

fish def place_cables
; This example places cable elements along a given arc of tunnel.

UDEC Version 7.0

FISH BEGINNER’S GUIDE 4 - 13

; calculate angle increment between successive cables
theta1 = math.degrad * theta1
theta2 = math.degrad * theta2
_angInc = (theta2 - theta1) / float(nCables - 1)
_ang = theta1

; get endpoint coordinates
loop ii (1, nCables)

_x1 = radius1 * math.cos(_ang) + xCentre
_y1 = radius1 * math.sin(_ang) + yCentre
_x2 = radius2 * math.cos(_ang) + xCentre
_y2 = radius2 * math.sin(_ang) + yCentre

; place the cable
command

cable @_x1 @_y1 @_x2 @_y2 5 2 3
endcommand
_ang = _ang + _angInc

endloop

end

@setup

block create polygon -25.0, -25.0 -25.0, 25.0 25.0, 25.0 25.0, -25.0
block cut split 0.0, -25.0 0.0, 25.0
block cut split -25.0, 0.0 25.0, 0.0
block cut tunnel 0.0, 0.0, @radius1, 16
block zone gen edge 10

block delete range annulus center 0.0, 0.0 rad 0 8
@place_cables

Each time through the loop, rectangular coordinates are calculated from the polar data in the model.
These coordinates are passed to the CABLE command inside the command – endcommand structure,
where the cable element is actually created. The results can be seen in Figure 4.2:

UDEC Version 7.0

4 - 14 User’s Guide

Figure 4.2 Model constructed in Example 4.13

UDEC Version 7.0

