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3 ENERGY CALCULATION

3.1 Introduction

Energy changes determined in UDEC are performed for the intact rock, the joints and for the work
done on boundaries. The energy terms calculated here use the same general nomenclature as those
used by Salamon (1984).

Since UDEC uses an incremental solution procedure, the equations of motion are solved at each mass
point in the body at every timestep. The incremental change in energy components is determined
at each timestep as the system attempts to come to equilibrium. UDEC also keeps a running sum
of each component.

The UDEC model itself has finite boundaries that must be taken into account in the energy analysis.
The energy analysis requires that the outer boundary of the model be free to deform so that the
work done at the boundary can be determined. This requires that either a stress (force) or boundary-
element boundary be used.
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3 - 2 Theory and Background

3.2 Energy Balance

The total energy balance can be expressed in terms of the released energy (Wr ), which is the
difference between the work done at the boundary of the model and the total stored and dissipated
strain energies:

Wr = W − (Uc + Ub + Wj + Wp) (3.1)

where Wr = released energy;

W = total boundary loading work supplied to the system;

Uc = total stored strain energy in material;

Ub = total change in potential energy of the system;

Wj = total dissipated energy in joint shear; and

Wp = total dissipated work in plastic deformation of intact rock.

A second calculation of released energy can be made based on the kinetic energy, mass damping
work, the work performed at viscous boundaries, and the strain energy in excavated material:

Wr = Uk + Wk + Wv + Um (3.2)

where Uk = current value of kinetic energy in the system;

Wk = total work dissipated by mass damping;

Wv = work done by viscous (nonreflecting) boundaries; and

Um = total strain energy in excavated material.

This second form of the released energy is particularly useful for dynamic problems since the
released kinetic energy is easily calculated.

The definitions of these individual terms, and the method of their calculation, are given in the
following section.
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3.3 Calculation of Individual Energy Components

3.3.1 Total Boundary Loading Work (W )

The work done on the external boundaries of the UDEC block structure is calculated from the
boundary gridpoint forces and displacements. Either a stress (force) or boundary-element outer
boundary must be used. For dynamic problems, the stress boundary is replaced by nonreflecting
(viscous) boundaries after initial stress equilibrium is achieved. The work done at a gridpoint is
calculated:.

Wgi = Fxi uxi + Fyi uyi (3.3)

where Wgi = work done at gridpoint i on the outer boundary;

Fxi = x-oriented force at the gridpoint;

uxi = x-oriented displacement at the gridpoint;

Fyi = y-oriented force at the gridpoint; and

uyi = y-oriented displacement at the gridpoint.

The total boundary work, Wl , done during timestep l is the sum of the work done for all gridpoints
on the boundary:

Wl =
ngp∑
i=1

Wgi (3.4)

where ngp = the number of gridpoints on the boundary.

The boundary work is summed for all timesteps:

W =
nt∑

l=1

Wl (3.5)

where nt = the number of timesteps. W will approach a constant value as the system approaches
equilibrium.

The rate of boundary loading work, �W , is simply the boundary work done per timestep:

�W = Wl+1 − Wl

(�t)
(3.6)
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3 - 4 Theory and Background

where �t is the timestep.

Histories of the total work, W , and incremental work, �W , are kept during a simulation.

3.3.2 Potential Energy (Ub)

The change in gravitational potential energy is calculated from the gridpoint gravitational forces
and the displacements of the gridpoints. The total potential energy is summed for incremental
displacements of all gridpoints:

Ugi = mi [gx uxi + gy uyi] (3.7)

where Ugi = the potential energy of gridpoint i;

mi = the mass of gridpoint i;

uxi , uyi = displacement components of gridpoint i; and

gx , gy = accelerations in the x- and y-directions (usually gravity).

The total potential energy is found by summing the energy for all gridpoints, i, at a given timestep,
k:

Ub =
ngp∑
i=1

Ugi (3.8)

The total Ub is kept for all timesteps:

Ub =
nt∑

j=1

Ubj (3.9)

where nt is the number of timesteps; Ub will approach a constant value as the model approaches
equilibrium.
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3.3.3 Kinetic Energy (Uk)

The kinetic energy is determined for each gridpoint at each timestep, and is summed for all gridpoints
at that timestep. A running total of the kinetic energy is not kept; so, as the system approaches
equilibrium, the kinetic energy will approach zero. The kinetic energy is given by

Uk =
ngp∑
i=1

1

2
mi (u̇i)

2 (3.10)

where Uk = kinetic energy of all gridpoints in a given timestep;

mi = mass of gridpoint i; and

u̇i = velocity at gridpoint i.

The incremental kinetic energy is calculated so the user can examine the rate of change between
timesteps:

Ukinc
= Ukn − Ukn−1

�t
(3.11)

where Ukn = kinetic energy at timestep n;

Ukn−1 = kinetic energy at timestep n-1; and

�t = timestep.

Kinetic energy is also calculated for rigid blocks in a similar fashion, based on the block mass and
velocity.

3.3.4 Damped Energy (Wk)

The mass-damping work is the summation of all energy absorbed by either local damping or adaptive
global damping (auto damping), and is intended for use primarily with static analysis. For dynamic
analyses, the work done on viscous boundaries will be much larger than the damped energy, and
will largely control the calculated value of the total released energy.

The damped energy can most easily be seen by examining a simplified version of the equation of
motion,

∂u̇

∂t
=

∑
F

m
− α u̇ (3.12)

where u̇ = velocity of a gridpoint of mass, m
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3 - 6 Theory and Background

∑
F = the force sum at the gridpoint; and

α = damping coefficient, = 2πf γ , where γ = fraction of critical damping;
and f = natural frequency of the system (cps); the circular frequency
in radians per second is ω = 2πf

The damping force is given by

Fd = m α u̇ (3.13)

and the rate of damped energy change at a gridpoint is

Ẇd = Fd u̇ = m α u̇2 (3.14)

The damped energy over a timestep at a gridpoint, j, is

Wdj =
∫

α m u̇2 dt = 2α �t Uk (3.15)

where Wdj is the energy damped at gridpoint j, and Uk is the kinetic energy of the gridpoint.

Therefore, the damped and kinetic energy components are related by the damping coefficient. The
total mass damping work is the sum of all gridpoints and timesteps:

Wd =
nt∑

i=1

ngp∑
j=1

Wdj (3.16)

where Wd = total energy damped;

nt = number of timesteps; and

ngp = number of gridpoints.

The incremental damped energy is also calculated as

Wdinc
= 2α Uk (3.17)
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3.3.5 Strain Energy Stored in the Rock Mass (Uc)

The total strain energy stored in the rock mass is composed of two parts: the energy stored in the
blocks, and that stored in the joints. Each is calculated, and the total stored energy, Uc, is determined
as the sum of these two components.

3.3.5.1 Block-Stored Strain Energy (Ucb)

The strain energy in the blocks is determined for all finite difference zones during each timestep.
The total stored strain energy is calculated by summing the values for all blocks. The incremental
strain energy in each zone for a timestep is given by

�Ucz = A

2

[
(σ11 + σ ′

11) e11 + 2 (σ12 + σ ′
12) e12 + (σ22 + σ ′

22) e22
]

(3.18)

where σ11, σ22, σ12 = current zone stresses;

σ ′
11, σ ′

22, σ ′
12 = zone stresses from the previous timestep;

e11, e22, e12 = incremental strains over the current timestep; and

A = area of zone.

The strain energy in a block is the sum of all zones within the block,

Ucb
=

∑
Ucz (3.19)

The total strain energy in a given timestep is the sum for all blocks. A running total is kept for all
timesteps, so that the value of Ucb

will approach a constant value with time as the system approaches
equilibrium.

The incremental block strain energy is also calculated by

Ucbinc
= Ucb

�t
(3.20)

An exception to the above calculation method is used in the case of initial equilibrium of the model
prior to any excavation. Normally, the in-situ stresses are set up in the model by “freezing” the
stresses in each zone using the insitu stress command. By also applying boundary stresses (which
are in equilibrium with the internal stresses) at the same time, the model will be at initial stress
equilibrium and will not require any timestepping. However, this method of consolidating the body
under initial stresses produces no strain in the body, and no apparent strain energy. Therefore, the
alternate form of the strain-energy density equation is used to define the initial strain energy in the
system:
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Ucz = A

2E

[
σ 2

11 + σ 2
22 + σ 2

33 − 2ν (σ11 σ22 + σ11 σ33 + σ22 σ33) + 2 (1 + ν) σ 2
12

]
(3.21)

3.3.5.2 Joint Strain Energy (Ucj )

The strain energy stored in the joints is separated into four component parts for elastic strain in
shear (Ujs), compression (Ujc), tension (Ujt ) and energy dissipated in slip (Ujf ). The calculations
of these components are performed differently for the two built-in joint constitutive models (the
Coulomb slip model and the continuously yielding model). In the Coulomb model, the joint normal
and shear stiffnesses are linear, whereas the continuously yielding model allows nonlinear stiffness.
The energy is determined for each contact along all joints in the model, although, at present, it is
not possible to separate energy by joint.

Coulomb Slip Model, Linear Stiffness

If fn < 0,

Ujt = −1

2
(fn + f ′

n) un (3.22)

If fn ≥ 0,

Ujc = −1

2
(fn + f ′

n) un (3.23)

If fs < fs max,

Ujs = −1

2
(fs + f ′

s ) us (3.24)

If fs ≥ fs max,

Ujf = 1

2
(fs + f ′

s ) us (3.25)

where fn, fs = current normal shear force at a contact, compression positive;

f ′
n, f ′

s = previous normal shear forces at a contact;

un, us = incremental normal and shear displacements at the contact over the current
timestep; and
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fs max = shear stress at which the Coulomb slip condition is met
(fs max < fn tan φ + C).

For the case in which fs ≥ fs max and slip occurs, energy is dissipated in the Coulomb model by
friction (heat). (See Section 3.3.5.4.)

Continuously Yielding Model – Nonlinear Stiffness Allowed

Ujt = 0 no tension in CY model (3.26)

Ujc = −1

2
(fn + f ′

n) un (3.27)

Ujs = −F

2
(fs + f ′

s ) us (3.28)

Ujf = 1 − F

2
(fs + f ′

s ) us (3.29)

where fn, fs = normal shear forces at a contact;

f ′
n, f ′

s = previous contact stresses;

un, us = incremental, normal shear displacements over the current timestep; and

F = the yielding factor for the continuously yielding model as described in
Section 2 in Constitutive Models.

The total energy absorbed and dissipated by the joints, Ucj , is given by the sum of all components:

Ucj = Ujs + Ujc + Ujt (3.30)
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3.3.5.3 Strain Energy Content of Excavated Material (Um)

When rock is excavated, the strain energy that was stored in the excavated volume is released. UDEC
allows excavation of the rock blocks that form the opening through use of the delete command or
assignment of the null constitutive model (via zone model null or change cons 0). The null model
does not delete the blocks, but forces in null blocks are prevented from being passed to gridpoints
of adjoining blocks. The null zones can collapse due to deformation of the opening, and can later
be changed to a backfill material. When a block is deleted or given a null constitutive model, the
energy sums are updated.

The total strain energy in the excavated material consists of the strain energy in the blocks and
the joints. The strain energy in the blocks is calculated in the same manner as the strain energy
described previously:

Umb
=

nb∑
i=1

nz∑
j=1

A

2E

[
σ 2

11 +σ 2
22 +σ 2

33 −2ν (σ11 σ22 +σ11 σ33 +σ22 σ33)+2(1+ν)σ 2
12

]
j

(3.31)

where Umb = block strain energy;

A = area of zone;

E = Young’s modulus of the rock mass;

ν = Poisson’s ratio;

σ11, σ22, σ33 = principal stresses in zone centroid;

nb = number of blocks in excavated material; and

nz = number of zones in the block.

The total strain energy in the joints bounding the excavated block(s) (Ucj ) is given as follows.

Coulomb Joints (Constant Stiffness)

Ucj =
nc∑
i=1

+1

2

[
f 2

n

kn

+ f 2
s

ks

]
i

(3.32)

where Ucj = strain energy stored in the joints;

fn, fs = normal shear force in joints;

kn, ks = normal shear stiffness of joints; and

nc = number of contacts.
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Continuously Yielding Joints (Nonlinear Normal Stiffness)

Ucj =
nc∑
i=1

1

2

[
u

1+ 1
1−en

n [an (1 − en)]
1

1−en

1 + 1
1−en

+ f 2
s

ks

]
i

(3.33)

where en = normal stiffness exponent;

un = normal displacement (closure) of joint surfaces;

an = initial normal stiffness of joint;

fs = shear force at contact;

ks = shear stiffness of contact; and

nc = number of contacts.

When a block is excavated, its energy is removed from the total strain energy, Uc, and added to the
total for the excavated material, Umb. The initial or in-situ strain energy state for the rock mass
is determined by using the standard strain-energy density function, where the principal stresses
are equal to the in-situ stresses. This is added to the boundary loading work (W) for the initial
equilibrium, pre-mining condition. The final values for stored strain energies are determined:

Uc = U ′
c − Umj − Umb (3.34)

Um = U ′
m + Umj + Umb (3.35)

Ucb = Ucb − Umb (3.36)

Ucj = Ucj − Umj (3.37)

where a “ ′ ” refers to the values from previous excavation steps.
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3.3.5.4 Friction Work Done on Joints (Wj )

Energy is dissipated through frictional heating of joints. This work done is exchanged from the
elastic strain energy, and is irrecoverable. UDEC keeps track of the frictional energy separately
from the elastic (stored) joint energy terms (Ujt , Ujc and Ujs). The friction loss is calculated for
linear and nonlinear normal stiffness as follows.

Coulomb Joints, Linear Normal Stiffness

If fs ≥ fs max,

Ujf =
nc∑
i=1

1

2
(fs + f ′

s ) us (3.38)

where Ujf = frictional energy at the contact during a timestep;

fs = current shear force at a contact;

f ′
s = previous shear force at a contact;

us = increment in shear displacement; and

nc = number of contacts.

Continuously Yielding Joint (Nonlinear Normal Stiffness)

Ujf =
nc∑
i=1

1 − F

2
(fs + f ′

s ) us (3.39)

where F = the yield factor for the continuously yielding joint, and nc = number of contacts.

The total dissipated energy is kept by summing over all the timesteps during an excavation step,

Wj =
nt∑

i=1

Ujf (3.40)

where Wj = total dissipated friction energy, and nt = number of timesteps.
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3.3.6 Viscous Boundary Work (Wv)

Viscous boundaries are used to dampen reflections of incident stress waves. The energy damped
from these stress waves is calculated from the boundary forces and deflections at the boundary
gridpoints:

Wgj = fx ux + fy uy (3.41)

where Wgj = boundary work at a gridpoint, j;

fx , fy = boundary forces; and

ux , uy = boundary displacements.

The viscous energy for a timestep is given by

Wv =
nbp∑
j=1

Wgj (3.42)

where nbp = number of boundary gridpoints.

The total viscous work is summed for all timesteps. The incremental viscous boundary work is
calculated by

�Wv = Wv

�t
(3.43)

where �t = the timestep.

3.3.7 Energy Dissipation in Blocks through Plastic Work (Wp)

Several plasticity models that can describe the deformability of the blocks are available in UDEC.
Energy is dissipated through plastic work as the zones undergo irreversible deformation. The strain
in any zone can be divided into an elastic and a plastic part. The elastic strain can be determined,
followed by the elastic strain energy as determined previously. The plastic work is found by taking
the difference between the total strain energy and the elastic energy component.

The elastic strain energy is given by

We = A

2E

[
σ 2

11 + σ 2
22 + σ 2

33 − 2ν (σ11 σ22 + σ11 σ33 + σ22 σ33) + 2(1 + ν)σ 2
12

]
(3.44)
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The change in elastic strain energy between excavation steps is given by

�We = We − W ′
e (3.45)

where We is the current elastic strain energy, and W ′
e is the previous elastic strain energy.

The total energy change can be found from the total strain and stress,

�WT = A

2

[
(σ11 + σ ′

11) e11 + 2 (σ12 + σ ′
12) e12 + (σ22 + σ ′

22) e22
]

(3.46)

The total plastic work dissipated during an excavation step is the difference between the total and
elastic energy change at any timestep,

�Wp = �WT − �We (3.47)

and the total dissipated is simply the sum of �Wp for all blocks at each timestep.

3.3.7.1 Energy Dissipated in Backfill Compression

UDEC keeps track of those blocks that have been excavated using the null model method and
replaced by backfill. In this case, elastic strain energy may be stored in the fill, and energy may be
dissipated via plastic deformation. This would normally be the case for sandfills. Energy values
are calculated as either stored or dissipated for each zone (as previously described), and are added
to the plastic work term.

3.3.7.2 Volume of Excavated Material (Vm)

When a block is deleted or assigned a null constitutive model type, the volume is added to the value
Vm. The area is calculated by using the mass and density of the zones that compose it:

Az = mass/density

where Az = area of a zone.

The volume of the deleted blocks is then equal to

Vm =
∑

Az (3.48)

for all zones in the excavated blocks.
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3.4 Method of Operation in UDEC

The energy calculations in UDEC are initiated using config energy and the block mechanical energy
on command. From this point on, the energies described in the previous sections are calculated
in an incremental fashion at each timestep from the stress, force, displacement and strain changes.
All energy values are summed from this point, with the exception of the kinetic energy, Uk , which
is kept as an incremental value. Therefore, the magnitude of the energies upon printout will be the
sum for the problem since timestepping began, and will include that computed for all excavation
steps. Several points are noted:

1. The Um component of energy is calculated immediately as blocks are deleted.

2. The mass-scaling option in UDEC must be disabled (by specifying block me-
chanical mass-scaling off), as it artificially adjusts masses of gridpoints to
speed convergence.

3. If boundary element coupling is used to represent the outer boundary, stress
units must be in terms of MPa.

Two additional commands have been added to UDEC for plotting and printing these energy com-
ponents. The command block mechanical history energy-sum will keep time histories of all energy
components, and block mechanical list energy will provide a summary listing of all energy compo-
nents in table form.

Section 3.5 presents an example that illustrates the energy monitoring calculations in UDEC.
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3.5 Energy Calculations: Excavation of a Circular Hole in an Infinite Elastic Medium

Salamon (1984) solved the problem of the stored and released energy in creation of a circular
tunnel in an infinite, elastic rock mass subjected to hydrostatic stresses. Here, UDEC is used
to generate energy components for this example, and the results are compared to the analytical
solution. Salamon assumes an infinite rock mass, such that the tractions and displacements induced
by the excavation of the hole become vanishingly small as the distance from the opening becomes
large. However, the following must be considered in this problem.

(1) As the boundary approaches infinity, the induced tractions and displacements
approach zero, but the area of the surface over which these tractions act ap-
proaches infinity.

(2) For a finite boundary, the tractions and displacements are not zero, and their
dot product (work) is a scalar. Therefore, the work done by external forces
cannot be canceled like the tractions.

Since the UDEC model is of finite size, the induced tractions and displacements are not zero, and
the outer boundary of the model must be taken into account in determining stored strain energy and
boundary work components. The following section reviews the Salamon solution and the changes
necessary for determination of these two components.

3.5.1 Derivation of Analytical Solution to Cylindrical Tunnel in an Infinite Medium

The derivation of the energy equations is given for the analytical solution to a cylindrical tunnel in
an infinite medium. Consider the 2D section shown in Figure 3.1, which has a Stage I excavated
radius of a and Stage II radius of c. The boundary is located a distance R from the center of the
tunnel. The tunnel is assumed to be sufficiently long that there are no end effects.

Solving the problem requires a few definitions. First, the volume of rock to be mined is Vm =
π(c2 − a2) per unit length of tunnel. The stress distribution at any point around the tunnel is given
by the radial stress, σ

(p)
r , and tangential stress, σ

(p)
t , as follows (Jaeger and Cook 1979).

σ
(p)
r = p

(
1 − a2

r2

)
(3.49)

σ
(p)
t = p

(
1 + a2

r2

)

UDEC Version 7.0



ENERGY CALCULATION 3 - 17
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Figure 3.1 Cross section through an infinite length tunnel

in which r is the distance from the tunnel center to the point of interest;

p is the virgin hydrostatic compression stress; and

a is the Stage I excavated radius.

Assuming plane strain conditions, the strains are related to stresses by

ε
(p)
r = p

2G

[
(1 − 2ν) − a2

r2

]
(3.50)

ε
(p)
T = p

2G

[
(1 − 2ν) + a2

r2

]

The induced stresses that result from going from Stage I to Stage II equilibrium are given by
subtracting stresses in Eq. (3.49) at excavated radius c from those at a. These stresses are given by

σ (i)
r = −p

(
c2 − a2

r2

)
(3.51)

σ
(i)
t = p

(
c2 − a2

r2

)
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The induced strains are determined in the same manner, and are given by

ε(i)
r = − p

2G

(
c2 − a2

r2

)
(3.52)

ε
(i)
t = p

2G

(
c2 − a2

r2

)

Displacements at any point around the tunnel during Stage I are given by Jaeger and Cook (1979):

u
(p)
r = p

2G

(
a2

R

)
(3.53)

u
(p)
t = 0

Similar expressions are used for Stage II displacements, except that a2 is replaced by c2.

Given the above definitions, it is now possible to solve for the energy terms. The equation relating
the change in potential energy to the work done by the body in going from Stage I to Stage II is
given by (after Salamon 1984, Eq. (18a))

W + Um = Uc + Wr (3.54)

where W = work done by external and body forces when acting through the induced
displacements;

Um= stored strain energy in the mined rock volume Vm at Stage I;

Uc = change in stored strain energy in the unmined rock volume V ;

Wr= released energy, = Um + Wk; and

Wk= kinetic energy dissipated by damping in the unmined rock and supports.
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The stored strain energy in the volume of rock mined, Um, at Stage I can be defined in terms of a
strain energy density function, φ. The strain energy density function is defined as

φ = 1

2
σij εij (3.55)

which, according to Jaeger and Cook (1979), can be expressed in terms of the stress tensor as

φ = 1

2E

[
σ 2

x + σ 2
y + σ 2

z − 2ν (σyσz + σzσx + σxσy) + 2(1 + ν)(τ 2
xy + τ 2

zx + τ 2
zy)

]
(3.56)

For the case of two-dimensional plane strain, two of the three shear stress components are zero
(τxz = τyz = 0), and the strain energy density function in Eq. (3.56) reduces to

φ = 1

2E

[
σ 2

x + σ 2
y + σ 2

z − 2ν (σyσz + σzσx + σxσy) + 2 (1 + ν)(τ 2
xy)

]
(3.57)

The stored strain energy in the mined volume of rock, Um, at Stage I is the integral of the energy
density function over the entire volume, Vm; that is (Salamon 1984, Eq. (14)),

Um =
∫

Vm

φ dV (3.58)

By substituting Eqs. (3.49) and (3.50) into Eq. (3.58), the stored strain energy in the rock to be
mined is

Um =
∫

Vm

φI dV =
∫ 2π

0

∫ c

0
r

[
σ

(p)
r ε

(p)
r + σ

(p)
t ε

(p)
t

]
dr dθ (3.59)

= p2

2G

[
r2

2
(1 − 2ν) θ − a4

2r2
θ

] ⎪⎪⎪⎪c

a

⎪⎪⎪⎪2π

0

= p2

2G

[
(1 − 2ν) + a2

c2

]
Vm

This term is the same as given by Salamon (1984), and is independent of the boundary radius.

The work done by external and body forces, W , is often referred to as the “gravitational” or
“potential” energy change. The change in potential energy is the sum of external work, Wext, plus
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the work done by body forces, Wbody. The work done by external forces, Wext, can be expressed
in terms of surface tractions, Ti . The work done by the body forces, Wbody, is expressed in terms
of force per unit volume, Xi . This work is given as (Salamon 1984, Eq. (7))

W = Wext + Wbody (3.60)

= −
∫

S

(
T

(p)
i + 1

2
T

(i)
i

)
u

(i)
i dS +

∫
V

Xi u
(i)
i dV

in which T
(i)
i = Ti − T

(p)
i ;

u
(i)
i = ui − u

(p)
i ;

T
(p)
i = boundary tractions at Stage I;

Ti = boundary tractions at Stage II;

T
(i)
i = induced tractions from Stage I to II;

u
(p)
i = boundary displacements at Stage I;

ui = boundary displacements at Stage II;

u
(i)
i = induced displacements from Stage I to II;

Xi = body forces per unit volume in volume V at Stage II; and

X
(p)
i = body forces per unit volume in volume V at Stage I.

Given the identities in Eq. (3.60) for Ti and ui , the work done by external forces can be rewritten as

Wext = − 1

2

∫
S

(
Ti + T

(p)
i

) (
ui − u

(p)
i

)
dS (3.61)

The change in potential energy, W , is a function only of the work done by the external forces, Wext,
as it has been assumed that there are no body forces; hence, Wbody is zero. Substituting relations
for tractions, as given by stresses in Eq. (3.49), and displacements in Eq. (3.53), the change in
potential energy is
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W = Wext =
∫

S

(
T

(p)
i + 1

2
T

(i)
i

)
u

(i)
i dS (3.62)

=
∫ 2π

0

[
p

(
1 − a2

R2

)
+ 1

2
(−p)

(
c2 − a2

R2

) ]
p

2G

(
c2 − a2

R

)
R dθ

= p2

2G

(
2 − c2 + a2

R2

)
Vm

This equation is different than Salamon’s, but it is derived directly from the surface integral rather
than by making substitutions relying on the assumption that U(ip) = Um.

The change in stored strain energy in the unmined rock, Uc, at Stage II is the difference in integrated
energy density over the volume, V , at the equilibrium states of Stage I and Stage II. It is written as

Uc =
∫

V

[
φII − φI

]
dV (3.63)

The change in stored strain energy in the unmined rock, Uc, is obtained from Eq. (3.63). The stored
strain energy at Stage II is given by

U =
∫

V

φII dV =
∫ 2π

0

∫ R

c

r

[
1

2

(
σ

p
r ε

p
r + σ

p
t ε

p
t

) ]
dr dθ (3.64)

= p2

2G

[
r2

2
(1 − 2ν) θ − c4

2r2
θ

] ⎪⎪⎪⎪R

c

⎪⎪⎪⎪2π

0

= p2

2G

[
(1 − 2ν) + c2

R2

]
(R2 − c2) π

and the stored strain energy at Stage I is given by

U(pp) =
∫

V

φI dV =
∫ 2π

0

∫ R

c

r

[
1

2

(
σ

p
r ε

p
r + σ

p
t ε

p
t

) ]
dr dθ (3.65)

= p2

2G

[
r2

2
(1 − 2ν) θ − a4

2r2
θ

] ⎪⎪⎪⎪R

c

⎪⎪⎪⎪2π

0

= p2

2G
(R2 − c2) π

[
(1 + 2ν) + a4

c2 R2

]
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Note that Salamon does not work out U or U(pp), but the equation for U(pp) is the same as Salamon’s
(1984) Eq. (II.5). Subtracting Eq. (3.65) from Eq. (3.64) gives

Uc = p2

2G
(c2 + a2)

(
1

c2
− 1

R2

)
Vm (3.66)

This expression does not agree with Salamon’s (1984) Eq. (II.12). To check this result, Uc can be
calculated as given by Salamon (1984):

Uc = U(ii) + 2U(pi) (3.67)

The induced stored strain energy is given by

U(ii) =
∫

V

φ(ii) dV =
∫ 2π

0

∫ R

c

r

[
1

2

(
σ i

r εi
r + σ i

t εi
t

) ]
dr dθ (3.68)

= p2

2G
(c2 − a2)

(
1

c2
− 1

R2

)
Vm

The stored strain energy induced by Stage I forces on the displacements that occur in Stage II is
given by

U(pi) =
∫

V

φ(pi) dV =
∫ 2π

0

∫ R

c

r

[
1

2

(
σ

p
r εi

r + σ
p
t εi

t

) ]
dr dθ (3.69)

= p2

2G
a2

(
1

c2
− 1

R2

)
Vm

Uc is obtained by substituting Eqs. (3.69) and (3.70) into Eq. (3.68).

The released energy, Wr , as given by Eq. (3.56), gives

Wr = W + Um − Uc (3.70)

= p2

G
(1 − ν) Vm

The kinetic energy, Wk , will be

Wk = Wr − Um = p2

2G

(
1 − a2

c2

)
Vm (3.71)
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3.5.2 UDEC Energy Calculation

The analytical solution described in Section 3.4 is compared to the UDEC model results for the
case of the initial excavation (Stage I) and enlargement (Stage II) of a circular tunnel. The radius
of the initial excavation is 1 m, and the enlargement produces a tunnel of 2 m radius. The outer
radius of the UDEC model is 10 m. A hydrostatic compressive stress of 100 MPa exists prior to
excavation. The elastic material has a shear modulus of 29.17 GPa and Poisson’s ratio of 0.2.

Figure 3.2 shows the initial UDEC block geometry, consisting of a number of concentric circular
blocks, and the zoning within the blocks. The UDEC data file to calculate the two excavation stages
and monitor energy components is listed in Example 3.1.

Note that adaptive global damping (block mechanical damping global) is used for this calculation.
As discussed in Note 12 in Section 3.9 in the User’s Guide, this damping is more computationally
efficient than local damping for an elastic analysis. Similar results for the energy components will
also be calculated if local damping is used.

Figure 3.2 UDEC initial geometry
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Example 3.1 Energy calculations for excavation of a circular hole

model new
block config energy
block mechanical energy off
model title ’ENERGY CALCULATION FOR CIRCULAR TUNNEL’
block tolerance corner-round-length 0.01
;use auto damping and turn off mass scaling
block mechanical damping global
block mechanical mass-scale off
;set geometry (before excavation)
block create circle 0 0 10 32
block cut crack -10 0 10 0
block cut crack 0 -10 0 10
block cut tunnel 0 0 1 32
block cut tunnel 0 0 2 32
block cut tunnel 0 0 3 32
block cut tunnel 0 0 6 32
;create zoning (4 different sizes)
block zone gen quad=0.4 range ann center 0 0 rad 1 2
block zone gen quad=0.8 range ann center 0 0 rad 2 3
block zone gen quad=1.6 range ann center 0 0 rad 3 6
block zone gen quad=3 range ann center 0 0 rad 6 10
block zone gen edge .4
;set stresses
block edge apply stress -100 0 -100
block insitu stress -100 0 -100 stress-ZZ -40
;material properties
block property material 1 density .002 bulk 38.9e3 shear 29.17e3
block domain property material 1 capillary-gamma 29.17e3
block contact property material 1 friction 40.0 cohesion 10e8 ...

tension 10e7 stiffness-normal 6e8 stiffness-shear 6e8
;histories (displacements and stresses) at radii=5,10,20
hist interval =20
block gridpoint history disp-x 1 0
block gridpoint history disp-x 2 0
block zone history stress-xx 1 0
block zone history stress-xx 2 0
block zone history stress-xx 3 0
block zone history stress-yy 1 0
block zone history stress-yy 2 0
block zone history stress-yy 3 0
model display hist 1
block solve rat 1e-5
model save ’energy0.sav’
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block mechanical energy on
block mechanical hist energy-sum
block boun-el gen
block boun-el mat 1
block boun-el fix 0 -100 -100 0
block boun-el stiff
; excavation step 1
block del range ann center 0,0 rad 0 1
block solve rat 1e-5
log on
block list energy
log off
model save ’energy1.sav’

; excavation step 2
block del range ann center 0,0 rad 1,2
block solve rat 1e-5
log on
block list energy
log off
model save ’energy2.sav’

Figure 3.3 gives an example of a history plot for the damped and kinetic energy components for the
first excavation stage. In this figure, the kinetic energy term is not summed over time, but decays
to zero as the model comes to equilibrium. At the same time, damped energy, which is summed,
approaches a constant value.
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Figure 3.3 Plot of the history of the damped, Wk (hist 21), and incremental
kinetic energy, Uk (hist 11), components. (The kinetic energy
drops to zero as the model comes to equilibrium, whereas the
damped (summed kinetic) energy approaches a constant value.)

Table 3.1 shows a typical result of the block mechanical list energy command after the first stage of
excavation. All of the current energy components and their rates of change are printed.
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Table 3.1 Totals for energy stored and dissipated in system

current kinetic energy (Uk) = 2.601E−06
total block strain energy (Ucb) = 2.052E−01
total fill strain energy (Ucf) = 0.000E+00
total joint strain energy (Ucj) = −1.099E−04
total material strain energy (Uc=Ucb+Ucf+Ucj) = 2.051E−01
total block energy excavated (Umb) = 3.210E−01
total joint energy excavated (Umj) = 8.699E−05
total strain energy excavated (Um=Umb+Umj) = 3.211E−01
total block volume excavated (Vm) = 3.121E+00
total change in potential energy (Ub) = 0.000E+00
total mass damping work (Wk) = 5.216E−01
total viscous boundary work (Wv) = 0.000E+00
total friction work (Wj) = 0.000E+00
total plastic strain work (Wp) = 0.000E+00
total boundary loading work (W) = 1.048E+00
total energy released (Wr=W-Uc-Ub-Wj-Wp) = 8.431E−01
total energy released (Wr=Uk+Wk+Wv+Um) = 8.427E−01

breakdown of energy stored in joints (Ucj)

total energy stored in tension (Ujt) = 0.000E+00
total energy stored in compression (Ujc) = −1.099E−04
total energy stored in shear (Ujs) = 6.461E−08
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3.5.3 Comparison to Salamon Solution

Table 3.2 summarizes the results from the analytical solution and UDEC. The comparison is good,
generally within 3%.

Table 3.2 Summary of results from the analytical solution and UDEC

ENERGY Excavation Stage I Excavation Stage II

COMPONENT analytic udec error (%) analytic udec error (%)

Uc 0.533 0.532 0.375 1.939 1.871 3.507

Um 0.323 0.321 0.623 1.373 1.354 1.384

Vm 3.141 3.121 0.637 9.425 9.369 0.594

Wk 0.538 0.522 2.974 1.212 1.165 3.878

W 1.071 1.048 2.148 3.150 3.046 3.302

WR1 0.861 0.843 2.091 2.585 2.523 2.400

WR2 0.861 0.843 2.091 2.585 2.518 2.592

NOTES

1. UDEC energy components at stage II are obtained by subtracting
components at stage I from the total components reported with block
mechanical list energy at stage II.

2. Uc in UDEC is different from that given by Salamon (1984). The
relation is

U(UDEC )
c = U(Salamon)

c − Um

3. WR1 = W − U
(UDEC )
c

4. WR2 = Wk + Um
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